| A. | 內(nèi)切 | B. | 外切 | C. | 相離 | D. | 內(nèi)含 |
分析 把兩圓為直角坐標(biāo)方程,求出兩圓的圓心,半徑,圓心距,由此能判斷兩圓$\left\{\begin{array}{l}{x=-3+2cosθ}\\{y=4+2sinθ}\end{array}\right.$與$\left\{\begin{array}{l}{x=3cosθ}\\{y=3sinθ}\end{array}\right.$的位置關(guān)系.
解答 解:圓$\left\{\begin{array}{l}{x=-3+2cosθ}\\{y=4+2sinθ}\end{array}\right.$的普通方程為(x+3)2+(y-4)2=4,圓心O1(-3,4),半徑r1=2,
圓$\left\{\begin{array}{l}{x=3cosθ}\\{y=3sinθ}\end{array}\right.$的普通方程為x2+y2=9,圓心O2(0,0),半徑r2=3,
圓心距|O1O2|=$\sqrt{(0+3)^{2}+(0-4)^{2}}$=5,
∵|O1O2|=r1+r2=5,
∴兩圓$\left\{\begin{array}{l}{x=-3+2cosθ}\\{y=4+2sinθ}\end{array}\right.$與$\left\{\begin{array}{l}{x=3cosθ}\\{y=3sinθ}\end{array}\right.$的位置關(guān)系是外切.
故選:B.
點(diǎn)評(píng) 本題考查兩圓的圓心距的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真參數(shù)方程和普通方程的互化,注意兩點(diǎn)間距離公式的合理運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2和-2 | B. | 2和0 | C. | 2和-1 | D. | $\frac{{\sqrt{3}}}{2}$和$-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com