分析 (1)用A表示“該生第一門課程取得優(yōu)秀成績”,用B表示“該生第二門課程取得優(yōu)秀成績”,用C表示“該生第三門課程取得優(yōu)秀成績”,由題意得P($\overline{A}\overline{B}\overline{C}$)=(1-$\frac{3}{4}$)(1-p)(1-q)=$\frac{3}{32}$,P(ABC)=$\frac{3}{4}$pq=$\frac{3}{32}$,由此能求出p,q.
(2)由題設(shè)知X的可能取值為0,1,2,3,分別求出其概率,由此能夠求出數(shù)學(xué)期望E(X).
解答 解:(1)用A表示“該生第一門課程取得優(yōu)秀成績”,用B表示“該生第二門課程取得優(yōu)秀成績”,用C表示“該生第三門課程取得優(yōu)秀成績”,
由題意得P(A)=$\frac{3}{4}$,P(B)=p,P(C)=q,p>q,
P($\overline{A}\overline{B}\overline{C}$)=(1-$\frac{3}{4}$)(1-p)(1-q)=$\frac{3}{32}$,
P(ABC)=$\frac{3}{4}$pq=$\frac{3}{32}$,
解得p=$\frac{1}{2}$,q=$\frac{1}{4}$.
(2)由題設(shè)知X的可能取值為0,1,2,3,
P(X=0)=$\frac{3}{32}$,
P(X=1)=$\frac{3}{4}$×(1-$\frac{1}{2}$)×(1-$\frac{1}{4}$)+(1-$\frac{3}{4}$)×$\frac{1}{2}$×(1-$\frac{1}{4}$)+(1-$\frac{3}{4}$)×(1-$\frac{1}{2}$)×$\frac{1}{4}$=$\frac{13}{32}$,
P(X=2)=$\frac{3}{4}$×$\frac{1}{2}$×(1-$\frac{1}{4}$)+$\frac{3}{4}$×(1-$\frac{1}{2}$)×$\frac{1}{4}$+(1-$\frac{3}{4}$)×$\frac{1}{2}$×$\frac{1}{4}$=$\frac{13}{32}$,
P(X=3)=$\frac{3}{32}$,
∴E(X)=0×$\frac{3}{32}$+1×$\frac{13}{32}$+2×$\frac{13}{32}$+3×$\frac{3}{32}$=1.5.
點(diǎn)評(píng) 本題考查離散隨機(jī)變量的概率分布列和數(shù)學(xué)期望,是歷年高考的必考題型之一.解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)和概率知識(shí)的靈活運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\overrightarrow{AE}$•$\overrightarrow{FC}$=0 | B. | $\overrightarrow{AE}$•$\overrightarrow{DF}$>0 | C. | $\overrightarrow{FC}$=$\overrightarrow{FD}$+$\overrightarrow{FB}$ | D. | $\overrightarrow{FD}$•$\overrightarrow{FB}$<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | 2 | C. | 2$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com