分析 (1)已知等式利用正弦定理化簡,再利用誘導(dǎo)公式及兩角和與差的正弦函數(shù)公式化簡,求出tanB的值,確定出B的度數(shù).
(2)利用余弦定理列出關(guān)系式,把b,cosB的值代入并利用基本不等式求出ac的最大值,即可確定出三角形面積的最大值.
解答 解:(1)由正弦定理得到:sinA=sinCsinB+sinBcosC,
∵在△ABC中,sinA=sin[π-(B+C)]=sin(B+C),
∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,
∴cosBsinC=sinCsinB,
∵C∈(0,π),sinC≠0,
∴cosB=sinB,即tanB=1,
∵B∈(0,π),
∴B=$\frac{π}{4}$,
(2)由余弦定理得到:b2=a2+c2-2accosB,即4=a2+c2-$\sqrt{2}$ac,
∴4+$\sqrt{2}$ac=a2+c2≥2ac,即ac≤$\frac{4}{2-\sqrt{2}}$=4+2$\sqrt{2}$,
當(dāng)且僅當(dāng)a=c,即a=c=$\sqrt{4+2\sqrt{2}}$時取“=”,
∵S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{2}}{4}$ac,
∴△ABC面積的最大值為$\sqrt{2}+1$.
點評 此題考查了正弦、余弦定理,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com