欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.一個正四棱錐的側(cè)棱長與底面邊長相等,體積為$\frac{4}{3}$$\sqrt{2}$,則它的表面積為4+4$\sqrt{3}$.

分析 如圖所示,PO⊥底面ABCD.取AB的中點E,連接OE,PE.設棱長AB=2x,則OE=x,PE=$\sqrt{3}$x,利用勾股定理可得PO=$\sqrt{2}$x,利用VP-ABCD=$\frac{1}{3}{S}_{ABCD}$•PO=$\frac{4}{3}$$\sqrt{2}$,解得x.
即可得出S表面積=4S正△PAB+S正方形ABCD

解答 解:如圖所示,
PO⊥底面ABCD.
取AB的中點E,連接OE,PE.
設棱長AB=2x,則OE=x,PE=$\sqrt{3}$x,
∴PO=$\sqrt{P{E}^{2}-O{E}^{2}}$=$\sqrt{2}$x,
∴VP-ABCD=$\frac{1}{3}{S}_{ABCD}$•PO
=$\frac{1}{3}(2x)^{2}$$•\sqrt{2}$x=$\frac{4}{3}$$\sqrt{2}$,
解得x=1.
∴S表面積=4S正△PAB+S正方形ABCD=$4×\frac{\sqrt{3}}{4}×{2}^{2}$+22=4+4$\sqrt{3}$.
故答案為:4+4$\sqrt{3}$.

點評 本題考查了正四棱錐的表面積與體積的計算公式、勾股定理、空間位置關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.設f(x)=3x+3x-8,現(xiàn)用二分法求方程3x+3x-8=0在區(qū)間(1,2)內(nèi)的近似解的,計算得f(1)<0,f(1.25)<0,f(1.5)>0,f(2)>0,則方程的根落在的區(qū)間(  )
A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若f(x)=3ax2+(b-2)x+1是定義在[-2-a,2a]上的偶函數(shù),則a+b=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在同一平面直角坐標系中,函數(shù)y=cos($\frac{x}{2}$+$\frac{3π}{2}$)(x∈[0,5π])的圖象和直線y=$\frac{1}{2}$的交點個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知以y=±$\sqrt{3}$x為漸近線的雙曲線D:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦點分別為F1,F(xiàn)2,若P為雙曲線D右支上任意一點,則$\frac{{|P{F_1}|-|P{F_2}|}}{{|P{F_1}|+|P{F_2}|}}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若f(x)=2x2-lnx在定義域的子區(qū)間(a-1,a+1)上有極值,則實數(shù)a的取值范圍是[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若某市8所中學參加中學生比賽的得分用莖葉圖表示(如圖)其中莖為十位數(shù),葉為個位數(shù),則這組數(shù)據(jù)的平均數(shù)和方差分別是( 。
A.91    5.5B.91     5C.92     5.5D.92     5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.給出下列結(jié)論:①命題“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;
②要得到函數(shù)y=sin($\frac{x}{2}$-$\frac{π}{4}$)的圖象,只需將y=sin$\frac{x}{2}$的圖象向右平移$\frac{π}{4}$個單位;
③數(shù)列{an}滿足“an+1=3an”是“數(shù)列{an}為等比數(shù)列”的充分不必要條件;
④命題“若x=y,則sinx=siny”的逆否命題為真命題.其中正確的是(  )
A.①②④B.①③C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若函數(shù)f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{2}x,x>2}\end{array}\right.$的值域為[4,+∞).

查看答案和解析>>

同步練習冊答案