分析 記射手第i此擊中目標(biāo)為Ai(i=1,2,3,4,5),則P(Ai)=0.8
(1)射手射擊三次的概率P=P($\overline{{A}_{1}}\overline{{A}_{2}}{A}_{3}$),
(2)X=0,1,2,3,4,5,P(X=0)=$P(\overline{{A}_{1}}\overline{{A}_{2}}\overline{{A}_{3}}\overline{{A}_{4}}\overline{{A}_{5}}$+$\overline{{A}_{1}}\overline{{A}_{2}}\overline{{A}_{3}}\overline{{A}_{4}}{A}_{5}$),P(X=1)=$P(\overline{{A}_{1}}\overline{{A}_{2}}\overline{{A}_{3}}{A}_{4})$,
P(X=2)=P($\overline{{A}_{1}}\overline{{A}_{2}}{A}_{3}$),P(X=3)=P($\overline{{A}_{1}}{A}_{2}$),P(X=4)=P(A1),即可求解
解答 解:記射手第i此擊中目標(biāo)為Ai(i=1,2,3,4,5),則P(Ai)=0.8
(1)射手射擊三次的概率P=P($\overline{{A}_{1}}\overline{{A}_{2}}{A}_{3}$)=0.2×0.2×0.8=0.032
(2)X=0,1,2,3,4,5
P(X=0)=$P(\overline{{A}_{1}}\overline{{A}_{2}}\overline{{A}_{3}}\overline{{A}_{4}}\overline{{A}_{5}}$+$\overline{{A}_{1}}\overline{{A}_{2}}\overline{{A}_{3}}\overline{{A}_{4}}{A}_{5}$)=0.2×0.2×0.2×0.2×(0.2+0.8)=0.0016,
P(X=1)=$P(\overline{{A}_{1}}\overline{{A}_{2}}\overline{{A}_{3}}{A}_{4})$=0.2×0.2×0.2×0.8=0.0064,
P(X=2)=P($\overline{{A}_{1}}\overline{{A}_{2}}{A}_{3}$)=0.2×0.2×0.8=0.032,
P(X=3)=P($\overline{{A}_{1}}{A}_{2}$)=0.2×0.8=0.16,
P(X=4)=P(A1)=0.8,
分布列為:
| X | 0 | 1 | 2 | 3 | 4 |
| P | 0.0016 | 0.0064 | 0.0032 | 0.16 | 0.8 |
點(diǎn)評(píng) 本題主要考查了離散型隨機(jī)變量的分布列及期望的求解,解題的關(guān)鍵是每種情況下概率的求解.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $(1,\sqrt{2}]$ | B. | $[\sqrt{2},+∞)$ | C. | $(1,\sqrt{3}]$ | D. | $[\sqrt{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -10<a≤0 | B. | -1<a≤0 | C. | 0≤a<1 | D. | 0≤a<10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 3 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com