| A. | 9π | B. | 8π | C. | $\frac{23}{3}π$ | D. | $\frac{28}{3}π$ |
分析 由題意可知上下底面中心連線的中點(diǎn)就是球心,求出球的半徑,即可求出球的表面積.
解答
解:根據(jù)題意條件可知三棱柱是棱長都為2的正三棱柱,
設(shè)上下底面中心連線EF的中點(diǎn)O,則O就是球心,其外接球的半徑為OA1,
又設(shè)D為A1C1中點(diǎn),在直角三角形EDA1中,EA1=$\frac{1}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{3}}{3}$
在直角三角形OEA1中,OE=1,由勾股定理得OA1=$\sqrt{1+\frac{4}{3}}$=$\sqrt{\frac{7}{3}}$
∴球的表面積為S=4π•$\frac{7}{3}$=$\frac{28}{3}$π,
故選:D.
點(diǎn)評 本題考查空間幾何體中位置關(guān)系、球和正棱柱的性質(zhì)以及相應(yīng)的運(yùn)算能力和空間形象能力.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{7}$ | B. | $\frac{4}{7}$ | C. | $\frac{1}{3}$ | D. | $\frac{8}{21}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com