【題目】下列函數(shù)中,既是偶函數(shù),又在
上單調遞增的是( )
A.
B.
C.
D.![]()
【答案】CD
【解析】
對每一個選項中的函數(shù)分別從是否滿足
,根據(jù)常見的初等函數(shù)的單調性判斷在
上是否單調遞增,可得出選項.
本題主要考查函數(shù)的單調性和函數(shù)的奇偶性.
A項,對于函數(shù)
,因為
,所以函數(shù)
不是偶函數(shù)。故A項不符合題意。
B項,對于函數(shù)
,因為當
時,
,當
,
,所以函數(shù)
在區(qū)間
上不是單調遞增的。故B項不符合題意.
C項,對于函數(shù)
,因為定義域為
,
,所以函數(shù)
為偶函數(shù),因為函數(shù)
,當
時,
,而
,函數(shù)
在
上單調遞增,所以函數(shù)
在區(qū)間
上為增函數(shù)。故C項符合題意.
D項,對于函數(shù)
,因為函數(shù)
,所以函數(shù)
是偶函數(shù)。而
在
上單調遞增,
在
上單調遞增,所以函數(shù)
在
上單調遞增。故D項符合題意.
故選:CD.
科目:高中數(shù)學 來源: 題型:
【題目】關于圓周率
,數(shù)學發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計
的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數(shù)對
,再統(tǒng)計其中x,y能與1構成鈍角三角形三邊的數(shù)對
的個數(shù)m,最后根據(jù)統(tǒng)計個數(shù)m估計
的值.如果統(tǒng)計結果是
,那么可以估計
的值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】世界排球比賽一般實行“五局三勝制”,在2019年第13屆世界女排俱樂部錦標賽(俗稱世俱杯)中,中國女排和某國女排相遇,根據(jù)歷年數(shù)據(jù)統(tǒng)計可知,在中國女排和該國女排的比賽中,每場比賽中國女排獲勝的概率為
,該國女排獲勝的概率為
,現(xiàn)中國女排在先勝一局的情況下獲勝的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知A,B分別為橢圓C:
(a>b>0)的左右頂點,P為橢圓C上異于A,B的任意一點,O為坐標原點,![]()
=﹣4,△PAB的面積的最大值為
.
(1)求橢圓C的方程;
(2)若橢圓C上存在兩點M,N,分別滿足OM∥PA,ON∥PB,求|OM||ON|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|2x﹣3|+|x+2|
(1)求不等式f(x)≤5的解集;
(2)若關于x的不等式f(x)≤a﹣|x|在區(qū)間[﹣1,2]上恒成立,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
x3(a>0,且a≠1).
(1)討論f(x)的奇偶性;
(2)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠商調查甲乙兩種不同型號汽車在10個不同地區(qū)賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖,為了鼓勵賣場,在同型號汽車的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號的“星級賣場”.
![]()
(Ⅰ)求在這10個賣場中,甲型號汽車的“星級賣場”的個數(shù);
(Ⅱ)若在這10個賣場中,乙型號汽車銷售量的平均數(shù)為26.7,求
的概率;
(Ⅲ)若
,記乙型號汽車銷售量的方差為
,根據(jù)莖葉圖推斷
為何值時,
達到最小值(只寫出結論).
注:方差
,其中
是
,
,…,
的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求曲線
在點
處的切線方程;
(Ⅱ)若函數(shù)
在區(qū)間
上存在極值,求實數(shù)
的取值范圍;
(Ⅲ)設
,對任意
恒有
,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
,
是橢圓
:
的左右兩個焦點,過
的直線與
交于
,
兩點(
在第一象限),
的周長為8,
的離心率為
.
(1)求
的方程;
(2)設
,
為
的左右頂點,直線
的斜率為
,
的斜率為
,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com