【題目】已知函數(shù)
.
(Ⅰ)求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)若函數(shù)
在區(qū)間
上存在極值,求實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)
,對任意
恒有
,求實(shí)數(shù)
的取值范圍。
【答案】(Ⅰ)
;(Ⅱ)
;(Ⅲ)
.
【解析】
(Ⅰ)求出導(dǎo)函數(shù)得到斜率,利用點(diǎn)斜式得到切線方程;
(Ⅱ)求出函數(shù)的極值,再探討函數(shù)在區(qū)間 (m,m
)(其中a>0)上存在極值,尋找關(guān)于m的不等式,求出實(shí)數(shù)m的取值范圍;
(Ⅲ)先求導(dǎo),再構(gòu)造函數(shù)h(x)=lnx
,求出h(x)的最大值小于0即可.
解:(I). ![]()
故切線的斜率為
,又f(e)=![]()
∴切線方程為:
,即![]()
(II).當(dāng)
時,![]()
當(dāng)x>l時,![]()
f(x)在(0,1)上單調(diào)遞增,在(1.+
)上單調(diào)遞減。
故f(x)在x=l處取得極大值。
∵f(x)在區(qū)間(m,m+
)(m>0)上存在極值,
∴0<m<1且m+
>1,解得![]()
(Ⅲ).由題可知.a≠0,且![]()
,
,
當(dāng)a<0時,g(x)>0.不合題意。
當(dāng)a>0時,由
可得
恒成立
設(shè)
,則![]()
求導(dǎo)得:![]()
設(shè)![]()
①當(dāng)0<a≤l時,△≤0,此時:![]()
∴h(x)在(0,1)內(nèi)單調(diào)遞增,又h(l)=0,所以h(x)<h(l)=0.
所以0<a≤l符合條件.
②當(dāng)a>1時,△>0,注意到t(0)=1,t(1)=4(1-a)<0,存在xo
(0,1),使得t(x0)=0,
于是對任意
,t(x)<0,h’(x)<0.則h(x)在(xo,1)內(nèi)單調(diào)遞減,又h(l)=0,所以當(dāng)
時,h(x)>0,不合要求,
綜合①②可得0<a≤1
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱
中,底面是邊長為4的等邊三角形,側(cè)棱垂直于底面,
,M是棱AC的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前n項(xiàng)和
,
是等差數(shù)列,且
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
.求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓
與圓
:
相切,且與圓
:
相內(nèi)切,記圓心
的軌跡為曲線
.設(shè)
為曲線
上的一個不在
軸上的動點(diǎn),
為坐標(biāo)原點(diǎn),過點(diǎn)
作
的平行線交曲線
于
,
兩個不同的點(diǎn).
(Ⅰ)求曲線
的方程;
(Ⅱ)試探究
和
的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(Ⅲ)記
的面積為
,
的面積為
,令
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】英語老師要求學(xué)生從星期一到星期四每天學(xué)習(xí)3個英語單詞:每周五對一周內(nèi)所學(xué)單詞隨機(jī)抽取若干個進(jìn)行檢測(一周所學(xué)的單詞每個被抽到的可能性相同)
(1)英語老師隨機(jī)抽了
個單詞進(jìn)行檢測,求至少有
個是后兩天學(xué)習(xí)過的單詞的概率;
(2)某學(xué)生對后兩天所學(xué)過的單詞每個能默寫對的概率為
,對前兩天所學(xué)過的單詞每個能默寫對的概率為
,若老師從后三天所學(xué)單詞中各抽取一個進(jìn)行檢測,求該學(xué)生能默寫對的單詞的個數(shù)
的分布列和期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,點(diǎn)
在橢圓
上.直線
過點(diǎn)
,且與橢圓
交于
,
兩點(diǎn),線段
的中點(diǎn)為
.
(I)求橢圓
的方程;
(Ⅱ)點(diǎn)
為坐標(biāo)原點(diǎn),延長線段
與橢圓
交于點(diǎn)
,四邊形
能否為平行四邊形?若能,求出此時直線
的方程,若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于頂點(diǎn)在原點(diǎn)的拋物線,給出下列條件:
①焦點(diǎn)在y軸上;
②焦點(diǎn)在x軸上
③拋物線上橫坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離等于6;
④拋物線的過焦點(diǎn)且垂直于對稱軸的弦的長為5;
⑤由原點(diǎn)向過焦點(diǎn)的某條直線作垂線,垂足坐標(biāo)為(2,1)
能使拋物線方程為y2=10x的條件是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在多面體
中,四邊形
是正方形,平面
平面
,
.
![]()
(1)求證:
平面
;
(2)在線段
上是否存在點(diǎn)
,使得平面
與平面
所成的銳二面角的大小為
,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費(fèi),若超過15次,超過部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.
(1)設(shè)日收費(fèi)為
元,每天軟件服務(wù)的次數(shù)為
,試寫出兩種方案中
與
的函數(shù)關(guān)系式;
(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的條形圖,依據(jù)該統(tǒng)計(jì)數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com