欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.設(shè)a、b、c∈R+,求證:$\frac{{a}^{2}}{b+c}$+$\frac{^{2}}{c+a}$+$\frac{{c}^{2}}{a+b}$≥$\frac{a+b+c}{2}$.

分析 利用基本不等式,可得$\frac{{a}^{2}}{b+c}$+$\frac{1}{4}$(b+c)≥a,$\frac{^{2}}{c+a}$+$\frac{1}{4}$(c+a)≥b,$\frac{{c}^{2}}{a+b}$+$\frac{1}{4}$(a+b)≥c,相加,即可得出結(jié)論.

解答 證明:∵a、b、c∈R+,
∴$\frac{{a}^{2}}{b+c}$+$\frac{1}{4}$(b+c)≥a,$\frac{^{2}}{c+a}$+$\frac{1}{4}$(c+a)≥b,$\frac{{c}^{2}}{a+b}$+$\frac{1}{4}$(a+b)≥c,
∴$\frac{{a}^{2}}{b+c}$+$\frac{1}{4}$(b+c)+$\frac{^{2}}{c+a}$+$\frac{1}{4}$(c+a)+$\frac{{c}^{2}}{a+b}$+$\frac{1}{4}$(a+b)≥a+b+c,
∴$\frac{{a}^{2}}{b+c}$+$\frac{^{2}}{c+a}$+$\frac{{c}^{2}}{a+b}$≥$\frac{a+b+c}{2}$.

點(diǎn)評 本題考查不等式的證明,考查基本不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.二維空間中,正方形的一維測度(周長)l=4a(其中a為正方形的邊長),二維測度(面積)S=a2;三維空間中,正方體的二維測度(表面積)S=6a2(其中a為正方形的邊長),三維測度(體積)V=a3;應(yīng)用合情推理,若四維空間中,“超立方”的三維測度V=4a3,則其四維測度W=$\frac{{a}^{4}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}是等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=log2x,則a4=( 。
A.-log2(3+2$\sqrt{2}$)B.-log2($\sqrt{2}$+1)C.log2(3+2$\sqrt{2}$)D.log2($\sqrt{2}$+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知z(2-i)=11+7i,若|z1|=1,則|z-z1|的最大值為$\sqrt{34}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在極坐標(biāo)系中,曲線C1,C2的極坐標(biāo)方程分別為ρ=-2cosθ,ρcos(θ+$\frac{π}{3}$)=1
(1)求曲線C1和C2的公共點(diǎn)的個(gè)數(shù);
(2)過極點(diǎn)作動直線與曲線C2相交于點(diǎn)Q,在OQ上取一點(diǎn)P,使|$\overrightarrow{OP}$|•|$\overrightarrow{OQ}$|=2,求點(diǎn)P的軌跡,并指出軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{m}$=(cos$\frac{x}{4}$,1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{4}$,cos2$\frac{x}{4}$).記f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,在△ABC中,角A、B、C的對邊分別是a、b、c,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.觀察下表:
1  2  3  4…第一行
2   3   4   5…第二行
3   4   5   6…第三行
4   5   6   7…第四行
????
????
第一列  第二列  第三列  第四列
根據(jù)數(shù)表所反映的規(guī)律,第n行第n列交叉點(diǎn)上的數(shù)應(yīng)為2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.圓的方程是x2+y2-2acosθ•x-2asinθ•y=0
(1)若a是參數(shù),θ是常數(shù),求圓心的軌跡;
(2)若θ是參數(shù),a是常數(shù),求圓心的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0},(a≥0)
(Ⅰ)若A⊆B,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案