(10分)用斜二測(cè)畫法作出邊長(zhǎng)為3cm、高4cm的矩形的直觀圖.并求出直觀圖的面積
s=![]()
,圖形見解析。
解析試題分析:(1)在已知ABCD中取AB、AD所在邊為X軸與Y軸,相交于O點(diǎn)(O與A重合),畫對(duì)應(yīng)X′軸,Y′軸使∠X′O′Y′=45°
(2)在X′軸上取A′,B′使A′B′=AB=3cm,在Y′軸上取D′,使A′D′=
AD=2cm,過D′作D′C′平行X′的直線,且等于A′D′長(zhǎng).
(3)連C′B′所得四邊形A′B′C′D′就是矩形ABCD的直觀圖.![]()
考點(diǎn):本題考查平面圖形的直觀圖。
點(diǎn)評(píng):本題考查平面圖形的直觀圖的畫法:斜二測(cè)畫法,考查作圖能力,屬基礎(chǔ)知識(shí)的考查.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,四棱錐
中,底面
為矩形,
平面
,點(diǎn)
分別是
和
的中點(diǎn).![]()
求證:
平面
;
若
, 四棱錐
外接球的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)一個(gè)多面體的直觀圖和三視圖如圖所示,其中
、
分別是
、
的中點(diǎn).
(1)求證:![]()
平面![]()
(2)在線段
上(含
、
端點(diǎn))確定一點(diǎn)
,使得![]()
平面
,并給出證明;
(3)一只小飛蟲在幾何體
內(nèi)自由飛,求它飛入幾何體
內(nèi)的概率. ![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =
,AB=BC=2AD=4,
E、F分別是AB、CD上的點(diǎn),且EF∥BC.設(shè)AE =
,G是BC的中點(diǎn).
沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).![]()
(1)當(dāng)
=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為
,求
的最大值;
(3)當(dāng)
取得最大值時(shí),求二面角D-BF-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三棱柱
的側(cè)棱與底面垂直,
,
,
,
分別是
,
的中點(diǎn),點(diǎn)
在直線
上,且
;
(Ⅰ)證明:無論
取何值,總有
;
(Ⅱ)當(dāng)
取何值時(shí),直線
與平面
所成的角
最大?并求該角取最大值時(shí)的正切值;
(Ⅲ)是否存在點(diǎn)
,使得平面
與平面
所成的二面角為30º,若存在,試確定點(diǎn)
的位置,若不存在,請(qǐng)說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
已知四棱臺(tái)
的三視圖如圖所示,![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求此四棱臺(tái)
的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com