分析 (Ⅰ)利用正弦定理把已知等式中的邊轉(zhuǎn)化為角的正弦,整理求得cosB,進(jìn)而求得B.
(Ⅱ)把${sin^2}A+sin(C-\frac{π}{6})$轉(zhuǎn)化為cosA的解析式,進(jìn)而根據(jù)cosA的范圍確定答案.
解答 解:(Ⅰ)∵(2c-a)cosB-bcosA=0,
由正弦定理得(2sinC-sinA)cosB-sinBcosA=0,
則2sinCcosB-sin(A+B)=0,
求得cosB=$\frac{1}{2}$,B=$\frac{π}{3}$.
由余弦定理得b2=a2+c2-2accosB,
即49=(a+c)2-2ac-2accosB,求得ac=40,
∴三角形△ABC面積S=$\frac{1}{2}$acsinB=10$\sqrt{3}$.
(Ⅱ)${sin^2}A+sin(C-\frac{π}{6})$=sin2A+sin($\frac{2π}{3}$-A-$\frac{π}{6}$)=sin2A+sin($\frac{π}{2}$-A)=-cos2A+cosA+1,A∈(0,$\frac{2π}{3}$),
令u=cosA∈(-$\frac{1}{2}$,1)
y=-u2+u+1∈($\frac{1}{4}$,$\frac{5}{4}$].
點(diǎn)評(píng) 本題主要考查了余弦定理和增弦定理的應(yīng)用.解題的關(guān)鍵是利用正弦定理和余弦定理對(duì)邊角問(wèn)題進(jìn)行轉(zhuǎn)化.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a=1時(shí),B有極大值,且極大值點(diǎn)(1,3) | |
| B. | a=2時(shí),A有極小值,且極小值點(diǎn)x0∈(0,$\frac{1}{4}$) | |
| C. | a=$\frac{1}{2}$時(shí),D有極小值,且極小值點(diǎn)x0∈(1,2) | |
| D. | a<0時(shí),C有極大值,且極大值點(diǎn)x0∈(-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | -1 | C. | 1 | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{24}{7}$ | B. | 4 | C. | $\frac{16}{7}$ | D. | 3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com