科目: 來源: 題型:
【題目】在喜迎建黨九十周年之際,某校舉辦校園唱紅歌比賽,選出10名同學(xué)擔(dān)任評委,并事先擬定從如下四種方案中選擇合理方案來確定演唱者的最后得分(每個評委打分最高10分).
方案1:所有評委給分的平均分.
方案2:在所有評委中,去掉一個最高分和一個最低分,再計算剩余評委的平均分.
方案3:所有評委給分的中位數(shù).
方案4:所有評委給分的眾數(shù).
為了探究上述方案的合理性,
先對某個同學(xué)的演唱成績進行統(tǒng)計實驗,右側(cè)是這個同學(xué)的得分統(tǒng)計圖:
(1)分別按上述四種方案計算這個同學(xué)演唱的最后得分.
(2)根據(jù)(1)中的結(jié)果,請用統(tǒng)計的知識說明哪些方案不適合作為這個同學(xué)演唱的最后得分?![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠BAC=∠BCA,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:Rt△ABE≌ Rt△CBF;
(2)求證:AE⊥CF;
(3)若∠CAE=30°,求∠ACF度數(shù).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,邊長為8的正方形OABC的兩邊在坐標(biāo)軸上(如圖).
![]()
(1)求點A,B,C的坐標(biāo).
(2)經(jīng)過A,C兩點的直線l上有一點P,點D(0,6)在y軸正半軸上,連PD,PB(如圖1),若PB2﹣PD2=24,求四邊形PBCD的面積.
(3)若點E(0,1),點N(2,0)(如圖2),經(jīng)過(2)問中的點P有一條平行于y軸的直線m,在直線m上是否存在一點M,使得△MNE為直角三角形?若存在,求M點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】菱形ABCD中,兩條對角線AC、BD相交于點O,點E和點F分別是BC和CD上一動點,且∠EOF+∠BCD=180°,連接EF.
![]()
(1)如圖2,當(dāng)∠ABC=60°時,猜想三條線段CE、CF、AB之間的數(shù)量關(guān)系___;
(2)如圖1,當(dāng)∠ABC=90°時,若AC=4
,BE=
,求線段EF的長;
(3)如圖3,當(dāng)∠ABC=90°,將∠EOF的頂點移到AO上任意一點O′處,∠EO′F繞點O′旋轉(zhuǎn),仍滿足∠EO′F+∠BCD=180°,O′E交BC的延長線一點E,射線O′F交CD的延長線上一點F,連接EF探究在整個運動變化過程中,線段CE、CF,O′C之間滿足的數(shù)量關(guān)系,請直接寫出你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司計劃購買A、B兩種計算器共100個,要求A種計算器數(shù)量不低于B種的
,且不高于B種的
.已知A、B兩種計算器的單價分別是150元/個、100元/個,設(shè)購買A種計算器x個.
(1)求計劃購買這兩種計算器所需費用y(元)與x的函數(shù)關(guān)系式;
(2)問該公司按計劃購買者兩種計算器有多少種方案?
(3)由于市場行情波動,實際購買時,A種計算器單價下調(diào)了3m(m>0)元/個,同時B種計算器單價上調(diào)了2m元/個,此時購買這兩種計算器所需最少費用為12150元,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】2013年4月20日,四川省雅安市蘆山縣發(fā)生了7.0級地震,某校開展了“雅安,我們在一起”的賑災(zāi)捐款活動,其中九年級二班50名學(xué)生的捐款情況如下表所示:
捐款金額(元) | 5 | 10 | 15 | 20 | 50 |
捐款人數(shù)(人) | 7 | 18 | 10 | 12 | 3 |
(1)求這50個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(2)根據(jù)樣本數(shù)據(jù),估計該校九年級300名學(xué)生在本次活動中捐款多于15元的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】計算:(直接寫結(jié)果)
(1)- 5+ 2 =
(2)-5-2=
(3)5-(-2)=
(4)(-5)×(-2)=
(5)(-2)÷(-6)=
(6)
=
(7)
=
(8)
=
(9)
=
(10)
=
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線
與
軸交于A、B兩點,點P在函數(shù)
的圖象上,若△PAB為直角三角形,則滿足條件的點P的個數(shù)為( ).
A. 2個 B. 3個 C. 4個 D. 6個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,當(dāng)∠E=90°且AB與CD的位置關(guān)系保持不變,移動直角頂點E,使∠MCE=∠ECD,當(dāng)直角頂點E點移動時,問∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說明理由;
(3)如圖3,P為線段AC上一定點,點Q為直線CD上一動點且AB與CD的位置關(guān)系保持不變,當(dāng)點Q在射線CD上運動時(點C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com