7.如果一個自然數(shù)能表示為兩個自然數(shù)的平方差,那么稱這個自然數(shù)為智慧數(shù),例如:
16=52-32,16就是一個智慧數(shù),小明和小王對自然數(shù)中的智慧數(shù)進行了如下的探索:
小明的方法是一個一個找出來的:
0=02-02,1=12-02,3=22-12,
4=22-02,5=32-22,7=42-32,
8=32-22,9=52-42,11=62-52,…
小王認為小明的方法太麻煩,他想到:
設k是自然數(shù),由于(k+1)2-k2=(k+1+k)(k+1-k)=2k+1.
所以,自然數(shù)中所有奇數(shù)都是智慧數(shù).
問題:
(1)根據(jù)上述方法,自然數(shù)中第12個智慧數(shù)是15;
(2)他們發(fā)現(xiàn)0,4,8是智慧數(shù),由此猜測4k(k≥3且k為正整數(shù))都是智慧數(shù),請你參考小王的辦法證明4k(k≥3且k為正整數(shù))都是智慧數(shù).
(3)他們還發(fā)現(xiàn)2,6,10都不是智慧數(shù),由此猜測4k+2(k為自然數(shù))都不是智慧數(shù),請利用所學的知識判斷26是否是智慧數(shù),并說明理由.