科目: 來源:2013屆安徽省定遠(yuǎn)中學(xué)九年級第一次素質(zhì)考試數(shù)學(xué)試卷(帶解析) 題型:解答題
已知二次函數(shù)y=-x2+4x+5,完成下列各題:
(1)將函數(shù)關(guān)系式用配方法化為
的形式,并寫出它的頂點坐標(biāo)、對稱軸.
(2)求出它的圖象與坐標(biāo)軸的交點坐標(biāo).
(3)在直角坐標(biāo)系中,畫出它的圖象.![]()
(4)根據(jù)圖象說明:當(dāng)x為何值時,y>0;當(dāng)x為何值時,y<0.
查看答案和解析>>
科目: 來源:2013屆安徽省定遠(yuǎn)中學(xué)九年級第一次素質(zhì)考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,某學(xué)生推鉛球,鉛球出手(點A處)的高度是0.6m,出手后的鉛球沿一段拋物線運行,當(dāng)運行到最高3m時,水平距離x=4m.
(1)求這個二次函數(shù)的解析式; (2)該男同學(xué)把鉛球推出去多遠(yuǎn)? ![]()
查看答案和解析>>
科目: 來源:2013屆安徽省定遠(yuǎn)中學(xué)九年級第一次素質(zhì)考試數(shù)學(xué)試卷(帶解析) 題型:解答題
某水果批發(fā)商場經(jīng)銷一種水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn), 在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)當(dāng)每千克漲價為多少元時,每天的盈利最多?最多是多少?
(2)若商場只要求保證每天的盈利為6000元,同時又可使顧客得到實惠,每千克應(yīng)漲價為多少元?
查看答案和解析>>
科目: 來源:2013屆安徽省定遠(yuǎn)中學(xué)九年級第一次素質(zhì)考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,隧道的橫截面由拋物線和長方形構(gòu)成,長方形的長是8m,寬是2m,拋物線的解析式為
。
(1)一輛貨運車車高4m,寬2m,它能通過該隧道嗎?
(2)如果該隧道內(nèi)設(shè)雙行道,中間遇車間隙為0.4m,那么這輛卡車是否可以通過?![]()
查看答案和解析>>
科目: 來源:2013屆安徽省定遠(yuǎn)中學(xué)九年級第一次素質(zhì)考試數(shù)學(xué)試卷(帶解析) 題型:解答題
求證:m取任何實數(shù)時,拋物線
的圖象與x軸必有兩個交點.
查看答案和解析>>
科目: 來源:2013屆安徽省定遠(yuǎn)中學(xué)九年級第一次素質(zhì)考試數(shù)學(xué)試卷(帶解析) 題型:解答題
已知二次函數(shù)y=x2-5x-6.
(1)求此函數(shù)圖象的頂點A和其與x軸的交點B和C的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目: 來源:2013屆安徽省定遠(yuǎn)中學(xué)九年級第一次素質(zhì)考試數(shù)學(xué)試卷(帶解析) 題型:解答題
已知拋物線與
交于A(-1,0)、B(3,0)兩點,與
軸交于點C(0,3),求拋物線的解析式;
查看答案和解析>>
科目: 來源:2012屆廣西桂平市中考模擬訓(xùn)練題(一)數(shù)學(xué)試卷(帶解析) 題型:解答題
已知,如圖所示拋物線
與x的兩個交點分別為A(1,0),B(3,0)。![]()
(1)求拋物線的解析式;
(2)設(shè)點P在該拋物線上滑動,且滿足條件S△PAB = 1這樣的點P有幾個?并求出所有點P 的坐標(biāo);
(3)設(shè)拋物線交y軸于點C,問該拋物線對稱軸上是否存在點M,使得△MAC的周長最。舸嬖,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2012屆廣西桂平市中考模擬訓(xùn)練題(二)數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,點B的坐標(biāo)為(4,3).平行于對角線AC的直線m從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設(shè)直線m與矩形OABC的兩邊分別交于點M、N,直線m運動的時間為t(秒).
(1)點A的坐標(biāo)是:_________,點C的坐標(biāo)是:__________;
(2)設(shè)△OMN的面積為S,求S與t的函數(shù)關(guān)系式;
(3)探求(2)中得到的函數(shù)S有沒有最大值?若有,求出最大值;若沒有,說明理由.![]()
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(遼寧沈陽卷)數(shù)學(xué)(帶解析) 題型:解答題
已知,如圖,在平面直角坐標(biāo)系中,點A坐標(biāo)為(-2,0),點B坐標(biāo)為 (0,2 ),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段OB于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=
x2+mx+n的圖象經(jīng)過A,C兩點.![]()
(1) 求此拋物線的函數(shù)表達(dá)式;
(2) 求證:∠BEF=∠AOE;
(3) 當(dāng)△EOF為等腰三角形時,求此時點E的坐標(biāo);
(4) 在(3)的條件下,當(dāng)直線EF交x軸于點D,P為(1) 中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的(
) 倍.若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便作答.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com