科目: 來源:2012屆廣東省汕頭市峽山街道模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(0,3)、C(-1,0).將矩形OABC繞原點(diǎn)O順時(shí)針方向旋轉(zhuǎn)90o,得到矩形OA′B′C′.設(shè)直線BB′與x軸交于點(diǎn)M、與y軸交于點(diǎn)N,拋物線經(jīng)過點(diǎn)C、M、N.解答下列問題:
(1)求直線BB′的 函數(shù)解析式;
(2)求拋物線的解析式;
(3)在拋物線上求出使S△PB′′ C′=
S矩形OABC的所有點(diǎn)P的坐標(biāo). ![]()
![]()
查看答案和解析>>
科目: 來源:2012屆湖南省臨武縣楚江中學(xué)初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,在平面直角坐標(biāo)系
中,已知拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),拋物線對(duì)稱軸
與
軸相交于點(diǎn)M.
(1)求拋物線的解析式和對(duì)稱軸;
(2)設(shè)點(diǎn)P為拋物線(
)上的一點(diǎn),若以A、O、M、P為頂點(diǎn)的四邊形四條邊的長度為四個(gè)連續(xù)的
正整數(shù),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo);
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)你求
出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)你說明理由. ![]()
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(浙江寧波卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖,二次函數(shù)
的圖像交
軸于
,交
軸于
,過
畫直線。![]()
(1)求二次函數(shù)的解析式;
(2)點(diǎn)
在
軸正半軸上,且
,求
的長;
(3)點(diǎn)
在二次函數(shù)圖像上,以
為圓心的圓與直線
相切,切點(diǎn)為
。
① 點(diǎn)
在
軸右側(cè),且
(點(diǎn)
與點(diǎn)
對(duì)應(yīng)),求點(diǎn)
的坐標(biāo);
② 若
的半徑為
,求點(diǎn)
的坐標(biāo)。
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(浙江嘉興卷)數(shù)學(xué)(帶解析) 題型:解答題
在平面直角坐標(biāo)系xOy中,點(diǎn)P是拋物線:y=x2上的動(dòng)點(diǎn)(點(diǎn)在第一象限內(nèi)).連接 OP,過點(diǎn)0作OP的垂線交拋物線于另一點(diǎn)Q.連接PQ,交y軸于點(diǎn)M.作PA丄x軸于點(diǎn)A,QB丄x軸于點(diǎn)B.設(shè)點(diǎn)P的橫坐標(biāo)為m.![]()
(1)如圖1,當(dāng)m=
時(shí),
①求線段OP的長和tan∠POM的值;
②在y軸上找一點(diǎn)C,使△OCQ是以O(shè)Q為腰的等腰三角形,求點(diǎn)C的坐標(biāo);
(2)如圖2,連接AM、BM,分別與OP、OQ相交于點(diǎn)D、E.
①用含m的代數(shù)式表示點(diǎn)Q的坐標(biāo);
②求證:四邊形ODME是矩形.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(浙江嘉興卷)數(shù)學(xué)(帶解析) 題型:解答題
某汽車租賃公司擁有20輛汽車.據(jù)統(tǒng)計(jì),當(dāng)每輛車的日租金為400元時(shí),可全部租出;當(dāng)每輛車的日租金每增加50元,未租出的車將增加1輛;公司平均每日的各項(xiàng)支出共4800元.設(shè)公司每日租出工輛車時(shí),日收益為y元.(日收益=日租金收入一平均每日各項(xiàng)支出)
(1)公司每日租出x輛車時(shí),每輛車的日租金為 元(用含x的代數(shù)式表示);
(2)當(dāng)每日租出多少輛時(shí),租賃公司日收益最大?最大是多少元?
(3)當(dāng)每日租出多少輛時(shí),租賃公司的日收益不盈也不虧?
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(天津市卷)數(shù)學(xué)(帶解析) 題型:解答題
已知拋物線y=ax2+bx+c(0<2a<b)的頂點(diǎn)為P(x0,y0),點(diǎn)A(1,yA)、B(0,yB)、C(-1,yC)在該拋物線上.
(Ⅰ)當(dāng)a=1,b=4,c=10時(shí),①求頂點(diǎn)P的坐標(biāo);②求
-的值;
(Ⅱ)當(dāng)y0≥0恒成立時(shí),求
的最小值.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(湖南長沙卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖半徑分別為m,n(0<m<n)的兩圓⊙O1和⊙O2相交于P,Q兩點(diǎn),且點(diǎn)P(4,1),兩圓同時(shí)與兩坐標(biāo)軸相切,⊙O1與x軸,y軸分別切于點(diǎn)M,點(diǎn)N,⊙O2與x軸,y軸分別切于點(diǎn)R,點(diǎn)H.![]()
(1)求兩圓的圓心O1,O2所在直線的解析式;
(2)求兩圓的圓心O1,O2之間的距離d;
(3)令四邊形PO1QO2的面積為S1,四邊形RMO1O2的面積為S2.
試探究:是否存在一條經(jīng)過P,Q兩點(diǎn)、開口向下,且在x軸上截得的線段長為
的拋物線?若存在,請(qǐng)求出此拋物線的解析式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(廣東汕頭卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖,拋物線
與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC.![]()
(1)求AB和OC的長;
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合),過點(diǎn)E作直線l平行BC,交AC于點(diǎn)D.設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留π).
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(浙江金華卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖1,已知直線y=kx與拋物線y=![]()
交于點(diǎn)A(3,6).
(1)求直線y=kx的解析式和線段OA的長度;
(2)點(diǎn)P為拋物線第一象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說明理由;
(3)如圖2,若點(diǎn)B為拋物線上對(duì)稱軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?![]()
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(浙江麗水卷)數(shù)學(xué)(帶解析) 題型:解答題
在直角坐標(biāo)系中,點(diǎn)A是拋物線y=x2在第二象限上的點(diǎn),連接OA,過點(diǎn)O作OB⊥OA,交拋物線于點(diǎn)B,以O(shè)A、OB為邊構(gòu)造矩形AOBC.![]()
(1)如圖1,當(dāng)點(diǎn)A的橫坐標(biāo)為 時(shí),矩形AOBC是正方形;
(2)如圖2,當(dāng)點(diǎn)A的橫坐標(biāo)為
時(shí),
①求點(diǎn)B的坐標(biāo);
②將拋物線y=x2作關(guān)于x軸的軸對(duì)稱變換得到拋物線y=-x2,試判斷拋物線y=-x2經(jīng)過平移交換后,能否經(jīng)過A,B,C三點(diǎn)?如果可以,說出變換的過程;如果不可以,請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com