分析 (1)結(jié)論:AC=AD+AB,只要證明AD=$\frac{1}{2}$AC,AB=$\frac{1}{2}$AC即可解決問題;
(2)(1)中的結(jié)論成立.以C為頂點(diǎn),AC為一邊作∠ACE=60°,∠ACE的另一邊交AB延長線于點(diǎn)E,只要證明△DAC≌△BEC即可解決問題;
(3)結(jié)論:$AD+AB=\sqrt{2}AC$.過點(diǎn)C作CE⊥AC交AB的延長線于點(diǎn)E,只要證明△ACE是等腰直角三角形,△DAC≌△BEC即可解決問題;
解答 解:(1)AC=AD+AB.
理由如下:如圖1中,![]()
在四邊形ABCD中,∠D+∠B=180°,∠B=90°,
∴∠D=90°,
∵∠DAB=120°,AC平分∠DAB,
∴∠DAC=∠BAC=60°,
∵∠B=90°,
∴$AB=\frac{1}{2}AC$,同理$AD=\frac{1}{2}AC$.
∴AC=AD+AB.
(2)(1)中的結(jié)論成立,理由如下:以C為頂點(diǎn),AC為一邊作∠ACE=60°,∠ACE的另一邊交AB延長線于點(diǎn)E,![]()
∵∠BAC=60°,
∴△AEC為等邊三角形,
∴AC=AE=CE,
∵∠D+∠B=180°,∠DAB=120°,
∴∠DCB=60°,
∴∠DCA=∠BCE,
∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,
∴∠D=∠CBE,∵CA=CB,
∴△DAC≌△BEC,
∴AD=BE,
∴AC=AD+AB.
(3)結(jié)論:$AD+AB=\sqrt{2}AC$.理由如下:
過點(diǎn)C作CE⊥AC交AB的延長線于點(diǎn)E,∵∠D+∠B=180°,∠DAB=90°,![]()
∴DCB=90°,
∵∠ACE=90°,
∴∠DCA=∠BCE,
又∵AC平分∠DAB,
∴∠CAB=45°,
∴∠E=45°.
∴AC=CE.
又∵∠D+∠B=180°,∠D=∠CBE,
∴△CDA≌△CBE,
∴AD=BE,
∴AD+AB=AE.
在Rt△ACE中,∠CAB=45°,
∴$AE=\frac{AC}{{cos{{45}°}}}=\sqrt{2}AC$,
∴$AD+AB=\sqrt{2}AC$.
點(diǎn)評 本題考查四邊形綜合題、等邊三角形的性質(zhì)、等腰直角三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?碱}型.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 83×10 | B. | 8.3×102 | C. | 8.3×103 | D. | 0.83×103 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2米 | B. | 2.5米 | C. | 2.4米 | D. | 2.1米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com