分析 (1)延長(zhǎng)CD交AE于K,通過△AEB≌△CDB(SAS)得到AE=CD,∠EAB=∠DCB,根據(jù)垂直的定義即可得到結(jié)果;
(2)根據(jù)∠DBE=∠ABC=90°,得出∠ABE=∠DBC,再證出△AEB≌△CDB,AE=CD,∠EAB=∠DCB,再根據(jù)∠DCB+∠COB=90°,∠AOK=∠COB,得出∠KOA+∠KAO=90°,∠AKC=90°,即可證出AE⊥CD.
解答 證明:(1)延長(zhǎng)CD交AE于K.
在△AEB和△CDB中,![]()
∵$\left\{\begin{array}{l}{∠CBD=∠CBD=90°}\\{AB=BC}\\{BE=DB}\end{array}\right.$
∴△AEB≌△CDB(SAS),
∴AE=CD,
∠EAB=∠DCB,
∵∠DCB+∠CDB=90°,
∠ADK=∠CDB,
∴∠ADK+∠DAK=90°,
∴∠AKD=90°,
∴AE⊥CD;![]()
(2)線段AE,CD的數(shù)量關(guān)系和位置關(guān)系仍成立:AE=CD,AE⊥CD,
∵∠DBE=∠ABC=90°,
∴∠ABE=∠DBC,
在△AEB和△CDB中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABE=∠DBC}\\{BE=BD}\end{array}\right.$
∴△AEB≌△CDB,
∴AE=CD,∠EAB=∠DCB,
∵∠DCB+∠COB=90°,∠AOK=∠COB,
∴∠KOA+∠KAO=90°,
∴∠AKC=90°,
∴AE⊥CD.
點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),在圖形變換中探究線段間的不變關(guān)系,關(guān)鍵是能在較復(fù)雜的圖形中找出全等的三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3cm | B. | $2\sqrt{3}$cm | C. | $2\sqrt{5}$cm | D. | $\frac{10}{3}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 15cm | B. | 18cm | C. | 21cm | D. | 24cm |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com