如圖1,已知梯形OABC,拋物線分別過點O(0,0)、A(2,0)、B(6,3).
(1)直接寫出拋物線的對稱軸、解析式及頂點M的坐標;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、 B1的坐標分別為 (x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當S=36時點A1的坐標;
(3)在圖1中,設(shè)點D的坐標為(1,3),動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發(fā),當點Q到達點M時,P、Q兩點同時停止運動.設(shè)P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.
(1)對稱軸:直線x=1,解析式:y=
x2-
x,頂點坐標:M(1,-
).(2) A1(6,3).(3) t=
.
【解析】
試題分析:(1)已知了O、A、B的坐標,可用待定系數(shù)法求出拋物線的解析式,進而可得到其對稱軸方程和頂點M的坐標.
(2)在兩條直線平移的過程中,梯形的上下底發(fā)生了改變,但是梯形的高沒有變化,仍為3,即y2-y1=3,可根據(jù)拋物線的解析式,用x1、x2表示出y1、y2,然后聯(lián)立y2-y1=3,可得到第一個關(guān)于x1、x2的關(guān)系式①;在兩條直線平移過程中,拋物線的對稱軸沒有變化,可用x1、x2以及拋物線的對稱軸解析式表示出梯形上下底的長,進而可得到梯形面積的表達式,這樣可得到另外一個x1、x2的關(guān)系式②,聯(lián)立兩個關(guān)系式,即可得到關(guān)于(x2-x1)與S的關(guān)系式③,將S=36代入②③的關(guān)系式中,即可列方程組求得x1、x2的值,進而可求出A點的坐標.
(3)要解答此題,首先要弄清幾個關(guān)鍵點:
一、當PQ∥AB時,設(shè)直線AB與拋物線對稱軸的交點為E,可得△DPQ∽△DBE,可用t表示出DP、DQ的長,而E點坐標易求得,根據(jù)相似三角形所得比例線段,即可得到此時t的值即t=
;
二、當P、Q都停止運動時,顯然BC>DM,所以此時t=DM÷1=3
;可分兩種情況討論:
①當0<t<
時,設(shè)直線PQ與直線AB的交點為F,與x軸的交點為G;由題意知△FQE∽△FAG,得∠FGA=∠FEQ,由于BC∥x軸,則∠DPQ=∠FGA=∠FEQ,由此可證得△DPQ∽△DEB,DB、DE的長已求得,可用t表示出DP、DQ的長,根據(jù)相似三角形所得比例線段,即可求得此時t的值;
②當
<t<3
時,方法同①;
在求得t的值后,還要根據(jù)各自的取值范圍將不合題意的解舍去.
試題解析::(1)對稱軸:直線x=1,
解析式:y=
x2-
x,
頂點坐標:M(1,-
).
(2)由題意得y2-y1=3,y2-y1=
x22-
x2-
x12+
x1=3,
得:(x2-x1)[
(x2+x1)-
]=3①,
s=
=3(x1+x2)-6,
得:x1+x2=
+2②,
把②代入①并整理得:x2-x1=
(S>0),
當s=36時,
,
解得:
,
把x1=6代入拋物線解析式得y1=3,
∴點A1(6,3).
(3)存在
易知直線AB的解析式為y=
x-
,可得直線AB與對稱軸的交點E的坐標為(1,-
),
∴BD=5,DE=
,DP=5-t,DQ=t,
當PQ∥AB時,
,即
,
得t=
,
下面分兩種情況討論:設(shè)直線PQ與直線AB、x軸的交點分別為點F、G;
當0<t<
時,如圖1-1;
∵△FQE∽△FAG,∴∠FGA=∠FEQ,
∴∠DPQ=∠DEB;易得△DPQ∽△DEB,
∴
,
∴
,
得t=
>
,
∴t=
(舍去);
當
<t<3
時,如圖1-2;
∵△FQE∽△FAG,
∴∠FAG=∠FQE,
∵∠DQP=∠FQE,∠FAG=∠EBD,
∴∠DQP=∠DBE,易得△DPQ∽△DEB,
∴![]()
∴
,
∴t=
;
∴當t=
秒時,使直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似.
![]()
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源:2013-2014學年山東省濟南市長清區(qū)九年級復習調(diào)查考試(一模)數(shù)學試卷(解析版) 題型:選擇題
如圖,雙曲線
與直線
交于點M、N,并且點M的坐標為(1,3),點N的縱坐標為-1.根據(jù)圖象信息可得關(guān)于x的方程
的解為
A.-3,1 B.-3,3 C.-1,1 D.-1,3
![]()
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省濟南市九年級中考模擬數(shù)學試卷(解析版) 題型:選擇題
如果+30m表示向東走30m,那么向西走40m表示為( )
A.+40m B.-40m C.+30m D.-30m
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省九年級第一次學業(yè)水平模擬考試數(shù)學試卷(解析版) 題型:選擇題
在同一直角坐標系下,直線y=x+1與雙曲線
的交點的個數(shù)為( )
(A)0個 (B)1個 (C)2個 (D)不能確定
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省九年級第一次學業(yè)水平模擬考試數(shù)學試卷(解析版) 題型:選擇題
如圖,直線l∥m,將含有45°角的三角板ABC的直角頂點C放在直線m上,若∠1=25°,則∠2的度數(shù)為( )
![]()
(A)20° (B)25° (C)30° (D) 35°
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省泰安市九年級學業(yè)模擬考試數(shù)學試卷(解析版) 題型:填空題
如圖,正方形紙片ABCD的邊長為8,將其沿EF折疊,則圖中①②③④四個三角形的周長之和為
![]()
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省泰安市九年級學業(yè)模擬考試數(shù)學試卷(解析版) 題型:選擇題
據(jù)統(tǒng)計,今年泰安市中考報名確認考生人數(shù)是96 200人,用科學記數(shù)法表示96 200為
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省德州市九年級第一次模擬考試數(shù)學試卷(解析版) 題型:解答題
如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1, 0)、B(4, 5)兩點,過點B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點M是拋物線上的一個點,直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點的四邊形是平行四邊形,求出點M的橫坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省德州市中考一模數(shù)學試卷(解析版) 題型:選擇題
下列命題中,正確的是( 。
A.平分弦的直徑垂直于弦
B.對角線相等的平行四邊形是正方形
C.對角線互相垂直的四邊形是菱形
D.三角形的一條中線能將三角形分成面積相等的兩部分
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com