欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結(jié)論:
①△AED≌△DFB;②S四邊形BCDG=$\frac{\sqrt{3}}{2}$CG2;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直;⑤∠BGE的大小為定值.
其中正確的結(jié)論個數(shù)為( 。
A.4B.3C.2D.1

分析 ①先證明△ABD為等邊三角形,根據(jù)“SAS”證明△AED≌△DFB;
②證明∠BGE=60°=∠BCD,從而得點B、C、D、G四點共圓,因此∠BGC=∠DGC=60°,過點C作CM⊥GB于M,CN⊥GD于N.證明△CBM≌△CDN,所以S四邊形BCDG=S四邊形CMGN,易求后者的面積;
③過點F作FP∥AE于P點,根據(jù)題意有FP:AE=DF:DA=1:3,則FP:BE=1:6=FG:BG,即BG=6GF;
④因為點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,當(dāng)點E,F(xiàn)分別是AB,AD中點時,CG⊥BD;
⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.

解答 解:①∵ABCD為菱形,∴AB=AD,
∵AB=BD,∴△ABD為等邊三角形,
∴∠A=∠BDF=60°,
又∵AE=DF,AD=BD,
∴△AED≌△DFB,故本選項正確;

②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴點B、C、D、G四點共圓,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,
∴∠BGC=∠DGC=60°,
過點C作CM⊥GB于M,CN⊥GD于N(如圖1),
則△CBM≌△CDN(AAS),
∴S四邊形BCDG=S四邊形CMGN,
S四邊形CMGN=2S△CMG,
∵∠CGM=60°,
∴GM=$\frac{1}{2}$CG,CM=$\frac{\sqrt{3}}{2}$CG,
∴S四邊形CMGN=2S△CMG=2×$\frac{1}{2}$×$\frac{1}{2}$CG×$\frac{\sqrt{3}}{2}$CG=$\frac{\sqrt{3}}{4}$CG2,故本選項錯誤;

③過點F作FP∥AE交DE于P點(如圖2),
∵AF=2FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=2AE,
∴FP:BE=FP:2AE=1:6,
∵FP∥AE,
∴PF∥BE,
∴FG:BG=FP:BE=1:6,
即BG=6GF,故本選項正確;

④當(dāng)點E,F(xiàn)分別是AB,AD中點時(如圖3),
由(1)知,△ABD,△BDC為等邊三角形,
∵點E,F(xiàn)分別是AB,AD中點,
∴∠BDE=∠DBG=30°,
∴DG=BG,
在△GDC與△BGC中,
$\left\{\begin{array}{l}{DG=BG}\\{CG=CG}\\{CD=CB}\end{array}\right.$,
∴△GDC≌△BGC,
∴∠DCG=∠BCG,
∴CH⊥BD,即CG⊥BD,故本選項錯誤;

⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,
故本選項正確;
綜上所述,正確的結(jié)論有①③⑤,共3個,
故選B.

點評 此題綜合考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),全等三角形的判定和性質(zhì),作出輔助線構(gòu)造出全等三角形,把不規(guī)則圖形的面轉(zhuǎn)化為兩個全等三角形的面積是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.酒駕猛于虎,但很多人不以為是,為了加強人們對酒駕危害的認識,交警部門加大了對酒駕的檢查力度.某市交警在2015年2月28日這天對本市各大主要交通路口進行車輛檢查,如圖,AC是該市解放路的一段,AE,BF,CD都是南北方向的街道,與解放路AC的交叉路口分別是A,B,C.已知出警點D位于點A的北偏東45°方向、點B的北偏東30°方向上,BD=2km,∠DBC=30°.
(1)求A、B的距離;
(2)第一組交警負責(zé)路口A,求該組從出警點D到路口A的路程(行駛路線為D--C--B--A).(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.下列幾何體的主視圖與其他三個不同的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,折疊矩形OABC的一邊BC,使點C落在OA邊的點D處,已知折痕BE=5$\sqrt{5}$,且$\frac{OD}{OE}$=$\frac{4}{3}$,以O(shè)為原點,OA所在的直線為x軸建立如圖所示的平面直角坐標(biāo)系,拋物線l:y=-$\frac{1}{16}$x2+$\frac{1}{2}$x+c經(jīng)過點E,且與AB邊相交于點F.
(1)求證:△ABD∽△ODE;
(2)若M是BE的中點,連接MF,求證:MF⊥BD;
(3)P是線段BC上一點,點Q在拋物線l上,且始終滿足PD⊥DQ,在點P運動過程中,能否使得PD=DQ?若能,求出所有符合條件的Q點坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.陽泉同學(xué)參加周末社會實踐活動,到“富樂花鄉(xiāng)”蔬菜大棚中收集到20株西紅柿秧上小西紅柿的個數(shù):
32 39 45 55 60 54 60 28 56 41
51 36 44 46 40 53 37 47 45 46
(1)前10株西紅柿秧上小西紅柿個數(shù)的平均數(shù)是47,中位數(shù)是49.5,眾數(shù)是60;
(2)若對這20個數(shù)按組距為8進行分組,請補全頻數(shù)分布表及頻數(shù)分布直方圖
個數(shù)分組28≤x<3636≤x<4444≤x<5252≤x<6060≤x<68
頻數(shù)25742
(3)通過頻數(shù)分布直方圖試分析此大棚中西紅柿的長勢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB、BD于M、N兩點.若AM=2,則線段ON的長為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.甲、乙兩布袋裝有紅、白兩種小球,兩袋裝球總數(shù)量相同,兩種小球僅顏色不同.甲袋中,紅球個數(shù)是白球個數(shù)的2倍;乙袋中,紅球個數(shù)是白球個數(shù)的3倍,將乙袋中的球全部倒入甲袋,隨機從甲袋中摸出一個球,摸出紅球的概率是( 。
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{17}{24}$D.$\frac{2}{5}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數(shù)是( 。
A.70°B.60°C.55°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,已知∠ABC=∠DCB,下列所給條件不能證明△ABC≌△DCB的是(  )
A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD

查看答案和解析>>

同步練習(xí)冊答案