分析 已知三角形兩邊的長和第三邊的高,未明確這個三角形為鈍角還是銳角三角形,所以需分情況討論,即∠ABC是鈍角還是銳角,然后利用勾股定理求解.
解答
解:如圖(1),△ABC中,AB=15,AC=20,BC邊上高AD=12,
在Rt△ABD中AB=15,AD=12,
由勾股定理得,BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=9,
在Rt△ADC中AC=20,AD=12,
由勾股定理得,DC=$\sqrt{A{C}^{2}-A{D}^{2}}$=16,
則BC的長為BD+DC=9+16=25,
△ABC的周長為:15+20+25=60,
如圖(2),同(1)的作法相同,BC=7,
△ABC的周長為:15+20+7=42,
故答案為:42或60.
點(diǎn)評 本題主要考查了勾股定理,解決問題的關(guān)鍵是在直角三角形中用勾股定理求得線段的長.當(dāng)已知條件中沒有明確角的大小時,要注意討論.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$+$\sqrt{5}$=$\sqrt{7}$ | B. | 2+$\sqrt{2}$=2$\sqrt{2}$ | C. | 3$\sqrt{2}$-$\sqrt{2}$=3 | D. | $\frac{3}{\sqrt{3}}$=$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①②③ | B. | ①② | C. | ①③ | D. | ②③ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com