分析 (1)延長AC交ON于點(diǎn)E,如圖,利用互余計(jì)算出∠OCE=65°,再利用對頂角相等得到∠ACB=∠OCE=65°,再根據(jù)∠ACD=90°-∠ACB即可解決問題;
(2)接著在Rt△ABC中利用∠ACB的余弦可計(jì)算出BC,然后根據(jù)矩形的性質(zhì)即可得到AD的長;
解答
解:(1)延長AC交ON于點(diǎn)E,如圖,
∵AC⊥ON,
∴∠OEC=90°,
在Rt△OEC中,
∵∠O=25°,
∴∠OCE=65°,
∴∠ACB=∠OCE=65°,
∴∠ACD=90°-∠ACB=25°
(2)∵四邊形ABCD是矩形,
∴∠ABC=90°,AD=BC,
在Rt△ABC中,∵cos∠ACB=$\frac{BC}{AC}$,
∴BC=AC•cos65°=5×0.42=2.1,
∴AD=BC=2.1.
點(diǎn)評 本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.靈活應(yīng)用勾股定理、互余關(guān)系和三角函數(shù)關(guān)系.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com