分析 連接AE,由垂直平分線的性質(zhì)可得AE=BE,利用勾股定理可得BC=4,設(shè)CE的長為x,則BE=4-x,在△ACE中利用勾股定理可得x的長,即得CE的長.
解答 解:連接AE,![]()
∵DE為AB的垂直平分線,
∴AE=BE,
∵在△ABC中,∠ACB=90°,AC=3,AB=5,
由勾股定理得BC=4,
設(shè)CE的長為x,則BE=AE=4-x,在Rt△ACE中,
由勾股定理得:x2+32=(4-x)2,
解得:x=$\frac{7}{8}$,
故答案為:$\frac{7}{8}$.
點(diǎn)評(píng) 本題主要考查了垂直平分線的性質(zhì)和勾股定理,利用方程思想是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 20° | B. | 30° | C. | 40° | D. | 50° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com