分析 (1)由PA與PB都為圓O的切線,利用切線的性質(zhì)得到OA垂直于AP,OB垂直于BP,可得出兩個(gè)角為直角,再由同弧所對(duì)的圓心角等于所對(duì)圓周角的2倍,由已知∠C的度數(shù)求出∠AOB的度數(shù),在四邊形PAOB中,根據(jù)四邊形的內(nèi)角和定理即可求出∠P的度數(shù).
(2)由S陰影=2×(S△PAO-S扇形)則可求得結(jié)果.
解答
解:連接OA、OB,
∵PA、PB是⊙O的切線,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,
又∵∠AOB=2∠C=120°,
∴∠P=360°-(90°+90°+120°)=60°.
∴∠P=60°.
(2)連接OP,
∵PA、PB是⊙O的切線,
∴$∠APO=\frac{1}{2}∠$APB=30°,
在Rt△APO中,tan30°=$\frac{OA}{AP}$,
∴AP=$\frac{OA}{tan30°}$=$\frac{4}{\frac{\sqrt{3}}{3}}$=4$\sqrt{3}$cm,
∴S陰影=2S△AOP-S扇形=2×($\frac{1}{2}$×4×$4\sqrt{3}$-$\frac{60π×{4}^{2}}{360}$)=(16$\sqrt{3}$-$\frac{16π}{3}$)(cm2).
點(diǎn)評(píng) 此題考查了切線的性質(zhì),解直角三角函數(shù),扇形面積公式等知識(shí).此題難度不大,注意數(shù)形結(jié)合思想的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 60.05(1+2x)=63% | B. | 60.05(1+3x)=63 | C. | 60.05(1+x)2=63% | D. | 60.05%(1+x)2=63% |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (x4)2=x6 | B. | x3•x2=x6 | C. | x2+x2=2x4 | D. | x6÷x2=x4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 8 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com