分析 (1)此題要證明DC=BC不能用全等三角形的性質,利用tan∠ADC=2求出BC然后再判定相等;
(2)容易證明△DEC≌△BFC,得CE=CF,∠ECD=∠FCB,這樣容易證明△ECF是等腰直角三角形;
(3)由∠BEC=135°得∠BEF=90°,這樣求sin∠BFE,然后利用已知條件就可以求出它的值了.
解答 解:(1)如圖,過A作DC的垂線AM交DC于M,則AM=BC=2.![]()
又tan∠ADC=2,
∴DM=$\frac{2}{2}$=1,
即DC=BC;
(2)等腰直角三角形.
證明:在△DEC和△BFC中,
$\left\{\begin{array}{l}{DE=BF}\\{∠EDC=∠FBC}\\{DC=BC}\end{array}\right.$,
∴△DEC≌△BFC,
∴CE=CF,∠ECD=∠FCB,
∴∠ECF=∠FCB+∠BCE=∠ECD+∠BCE=∠BCD=90°,
即△ECF是等腰直角三角形;
(3)設BE=k,則CE=CF=2k,
∴EF=2$\sqrt{2}$k,
∵∠BEC=135°,又∠CEF=45°,
∴∠BEF=90°,
所以BF=$\sqrt{{k}^{2}+(2\sqrt{2}k)^{2}}$=3k,
所以sin∠BFE=$\frac{k}{3k}=\frac{1}{3}$.
點評 本題考查三角函數(shù)、全等三角形的應用、等腰三角形的判定等知識點的綜合應用及推理能力、運算能力,解決本題的關鍵是作出輔助線.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
| x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … |
| y | … | 4 | 3 | 2 | 1 | 0 | 1 | 2 | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | a-(2a-b)=-a-b | B. | (a2-2ab+a)÷a=a-2b | ||
| C. | ${({-\frac{1}{3}{a^2}})^3}=-\frac{1}{9}{a^6}$ | D. | (a+2b)(a-b)=a2+ab-2b2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 30° | B. | 45° | C. | 55° | D. | 75° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com