分析 由矩形的性質(zhì)得出OA=OB,得出∠OAB=∠OBA,再由已知條件求出∠BAE=22.5°,得出∠OAB=∠OBA=67.5°,即可得出∠EAC.
解答 解:∵四邊形ABCD是矩形,
∴∠BAD=90°,OA=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,AC=BD,
∴OA=OB,
∴∠OAB=∠OBA,
∵∠DAE:∠BAE=3:1,
∴∠BAE=$\frac{1}{4}$×90°=22.5°,
∵AE⊥BD,
∴∠AEB=90°,
∴∠OAB=∠OBA=90°-22.5°=67.5°,
∴∠EAC=67.5°-22.5°=45°;
故答案為:45°.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、等腰三角形的判定與性質(zhì);熟練掌握矩形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{11}{4}$<a≤-$\frac{5}{2}$ | B. | -$\frac{11}{4}$≤a≤-$\frac{5}{2}$ | C. | -$\frac{11}{4}$≤a<-$\frac{5}{2}$ | D. | -$\frac{11}{4}$<a<-$\frac{5}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{y}-\frac{1}{x}=1$ | B. | $y=-\frac{3}{2x}$ | C. | $y=\frac{2}{x+1}$ | D. | $y=\frac{5}{x^2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com