分析 (1)根據(jù)角平分線的性質(zhì)得到DE=DF,根據(jù)三角形的面積公式證明即可;
(2)根據(jù)菱形的性質(zhì)得到AB∥CD,根據(jù)相似三角形的判定定理得到△AEF∽△DCF,根據(jù)相似三角形的性質(zhì)計算即可.
解答 (1)證明:過點A作AG⊥BC于點G,過點D分別作DE⊥AC于點E,DF⊥AB于點F,
∵AD平分∠BAC,DE⊥AC,DF⊥AB,
∴DE=DF,
△ADC的面積=$\frac{1}{2}$×AC×DE=$\frac{1}{2}$×CD×AG,
△ADB的面積=$\frac{1}{2}$×AB×DF=$\frac{1}{2}$×BD×AG,
∴CD:BD=AC:AB;
(2)解:∵四邊形ABCD為菱形,
∴AB∥CD,AB=CD,
∴△AEF∽△DCF,
∴AE:CD=AF:FC,
∴AF:FC=1:2.
點評 本題考查的是角平分線的性質(zhì)、相似三角形的判定和性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等、相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{3}$+$\sqrt{2}$=$\sqrt{5}$ | B. | $\sqrt{3}$×$\sqrt{2}$=6 | C. | $\sqrt{8}$÷$\sqrt{2}$=2 | D. | (-$\sqrt{3}$)2=3 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com