分析 ①根據(jù)題意可知∠ACD=45°,則GF=FC,則EG=EF-GF=CD-FC=DF;
②由SAS證明△EHF≌△DHC,得到∠HEF=∠HDC,從而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;
③同②證明△EHF≌△DHC即可;
④若$\frac{AE}{AB}$=$\frac{1}{3}$,則AE=$\frac{1}{2}$BE,可以證明△EGH≌△DFH,則∠EHG=∠DHF且EH=DH,則∠DHE=90°,△EHD為等腰直角三角形,過(guò)H點(diǎn)作HM垂直于CD于M點(diǎn),設(shè)HM=x,則DM=2x,DH=$\sqrt{5}$x,CD=6x,則S△DHC=$\frac{1}{2}$×HM×CD=$\frac{3}{2}$x2,S△EDH=$\frac{1}{2}$×DH2=$\frac{5}{2}$x2.
解答 解:①∵四邊形ABCD為正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG為等腰直角三角形,
∴GF=FC,
∵EG=EF-GF,DF=CD-FC,
∴EG=DF,故①正確;
②∵△CFG為等腰直角三角形,H為CG的中點(diǎn),
∴FH=CH,∠GFH=$\frac{1}{2}$∠GFC=45°=∠HCD,
在△EHF和△DHC中,$\left\{\begin{array}{l}{EF=CD}\\{∠EFH=∠DCH}\\{FH=CH}\end{array}\right.$,
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正確;
③∵△CFG為等腰直角三角形,H為CG的中點(diǎn),
∴FH=CH,∠GFH=$\frac{1}{2}$∠GFC=45°=∠HCD,
在△EHF和△DHC中,$\left\{\begin{array}{l}{EF=CD}\\{∠EFH=∠DCH}\\{FH=CH}\end{array}\right.$,
∴△EHF≌△DHC(SAS),故③正確;
④∵$\frac{AE}{AB}$=$\frac{1}{3}$,![]()
∴AE=$\frac{1}{2}$BE,
∵△CFG為等腰直角三角形,H為CG的中點(diǎn),
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,$\left\{\begin{array}{l}{ED=DF}\\{∠EGH=∠HFD}\\{GH=FH}\end{array}\right.$,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD為等腰直角三角形,
過(guò)H點(diǎn)作HM垂直于CD于M點(diǎn),如圖所示:
設(shè)HM=x,則DM=2x,DH=$\sqrt{5}$x,CD=3x,
則S△DHC=$\frac{1}{2}$×HM×CD=$\frac{3}{2}$x2,S△EDH=$\frac{1}{2}$×DH2=$\frac{5}{2}$x2,
∴3S△EDH=5S△DHC,故④錯(cuò)誤;
故答案為:①②③.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、三角形面積的計(jì)算等知識(shí);熟練掌握正方形的性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | $\sqrt{2}$ | C. | 2 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 120° | B. | 130° | C. | 135° | D. | 150° |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com