分析 (1)由條件可證明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;
(2)由條件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,結合條件可證明△ABD≌△CAE,同(1)可得出結論;
(3)由條件可知EM=AH=GN,可得EM=GN,結合條件可證明△EMI≌△GNI,可得出結論I是EG的中點.
解答 解:(1)如圖1,![]()
∵BD⊥直線l,CE⊥直線l,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD
在△ADB和△CEA中,
$\left\{\begin{array}{l}{∠ABD=∠CAE}\\{∠BDA=∠CEA}\\{AB=AC}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)DE=BD+CE.
如圖2,![]()
證明如下:
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠DBA=∠CAE,
在△ADB和△CEA中.
$\left\{\begin{array}{l}{∠BDA=∠AEC}\\{∠DBA=∠CAE}\\{AB=AC}\end{array}\right.$.
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE
(3)如圖3,![]()
過E作EM⊥HI于M,GN⊥HI的延長線于N.
∴∠EMI=GNI=90°
由(1)和(2)的結論可知EM=AH=GN
∴EM=GN
在△EMI和△GNI中,
$\left\{\begin{array}{l}{∠GIH=∠EIM(對頂角相等)}\\{EM=GN}\\{∠GHI=∠EMI}\end{array}\right.$,
∴△EMI≌△GNI(AAS),
∴EI=GI
∴I是EG的中點
點評 本題主要考查全等三角形的判定和性質,由條件證明三角形全等得到BD=AE、CE=AD是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | 因為∠1=∠2,所以a∥b | B. | 因為∠4=∠6,所以c∥d | ||
| C. | 因為∠3+∠4=180°,所以a∥b | D. | 因為∠1+∠5=180°,所以a∥b |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com