分析 先證出四邊形EFGH是菱形,再證出∠HEF=90°,即可得到四邊形EFGH是正方形;再設(shè)四邊形EFGH面積為S,BE=xcm,則BF=(8-x)cm,由勾股定理得出S=x2+(8-x)2=2(x-4)2+32,S是x的二次函數(shù),容易得出四邊形EFGH面積的最小值.
解答 解:
∵四邊形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=BE=CF=DG,
在△AEH、△BFE、△CGF和△DHG中,
$\left\{\begin{array}{l}{AE=BF=CG=DH}\\{∠A=∠B=∠C=∠D}\\{AH=BE=CF=DG}\end{array}\right.$,
∴△AEH≌△BFE≌△CGF≌△DHG(SAS),
∴EH=FE=GF=GH,∠AEH=∠BFE,
∴四邊形EFGH是菱形,
∵∠BEF+∠BFE=90°,
∴∠BEF+∠AEH=90°,
∴∠HEF=90°,
∴四邊形EFGH是正方形;
設(shè)四邊形EFGH面積為S,設(shè)BE=xcm,則BF=(8-x)cm,
根據(jù)勾股定理得:EF2=BE2+BF2=x2+(8-x)2,
∴S=x2+(8-x)2=2(x-4)2+32,
∵2>0,
∴S有最小值,
當(dāng)x=4時(shí),S的最小值=32,
∴四邊形EFGH面積的最小值為32cm2,
故答案為:32.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì)與判定、菱形的判定、全等三角形的判定與性質(zhì)、勾股定理、三角函數(shù)、二次函數(shù)的最值等知識(shí);本題綜合性強(qiáng),有一定難度,需要證明三角形全等和運(yùn)用二次函數(shù)才能得出結(jié)果.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ±3 | B. | 3 | C. | $\root{3}{9}$ | D. | ±$\root{3}{9}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 向下平移了2個(gè)單位 | B. | 向上平移了2個(gè)單位 | ||
| C. | 向左平移了2個(gè)單位 | D. | 向右平移了2個(gè)單位 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 矩形 | B. | 菱形 | C. | 正方形 | D. | 梯形 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com