分析 (1)由平行線的性質(zhì)得出∠MFP=∠NCP,由AAS證明△PMF≌△PNC即可;
(2)由全等三角形的性質(zhì)得出FM=CN,由等腰三角形的性質(zhì)和平行線的性質(zhì)得出∠B=∠MFB,證出BM=FM,即可得出結(jié)論.
解答 (1)證明:∵M(jìn)F∥AN,
∴∠MFP=∠NCP,
在△PMF和△PNC中,
$\left\{\begin{array}{l}{∠MFP=∠NCP}&{\;}\\{∠MPF=∠NPC}&{\;}\\{PM=PN}&{\;}\end{array}\right.$,
∴△PMF≌△PNC(AAS);
(2)證明:由(1)得:△PMF≌△PNC,
∴FM=CN,
∵AB=AC,
∴∠B=∠ACB,
∵M(jìn)F∥AN,
∴∠MFB=∠ACB,
∴∠B=∠MFB,
∴BM=FM,
∴BM=CN.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、平行線的性質(zhì);熟練掌握等腰三角形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3,-3 | B. | 2,-3 | C. | 5,-3 | D. | 2,3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com