| A. | (2$\sqrt{3}$,30°) | B. | (60°,2$\sqrt{3}$) | C. | (30°,4) | D. | (30°,2$\sqrt{3}$) |
分析 過B作BC⊥x軸于C,根據(jù)正六邊形的性質(zhì),得到△ACB與△BCO都是含30°的直角三角形,根據(jù)含30°的直角三角形的性質(zhì)先得到BC的長度,再得到OB的長度,然后根據(jù)“極坐標(biāo)”的定義寫出即可.
解答
解:如圖,過B作BC⊥x軸于C,
∵六邊形是正六邊形,
∴∠BAC=60°,AO=AB,
∴∠ABC=30°,∠AOB=∠ABO=30°,
∴在Rt△ACB中,BC=$\frac{\sqrt{3}}{2}$AB=$\sqrt{3}$,
在Rt△BCO中,BO=2BC=2$\sqrt{3}$.
∴正六邊形的頂點(diǎn)B的極坐標(biāo)應(yīng)記為(30°,2$\sqrt{3}$).
故選:D.
點(diǎn)評 本題考查了正多邊形,坐標(biāo)確定位置,主要利用了正六邊形的性質(zhì),讀懂題目信息,理解“極坐標(biāo)”的定義是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com