分析 根據(jù)等邊三角形三線合一的性質(zhì)可得D為BC的中點(diǎn),即BD=CD,在直角三角形ABD中,已知AB、BD,根據(jù)勾股定理即可求得AD的長,即可求三角形ABC的面積,即可解題.
解答 解:等邊三角形高線即中線,故D為BC中點(diǎn),![]()
∵AB=3,
∴BD=1.5,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\frac{3}{2}\sqrt{3}$,
∴等邊△ABC的面積=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×3×$\frac{3\sqrt{3}}{2}$=$\frac{9\sqrt{3}}{4}$.
故答案為:$\frac{9\sqrt{3}}{4}$.
點(diǎn)評 本題考查了勾股定理在直角三角形中的運(yùn)用,等邊三角形面積的計(jì)算,本題中根據(jù)勾股定理計(jì)算AD的值是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 班級 | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) |
| (1)班 | 24 | 24 | 24 |
| (2)班 | 24 | 24 | 21 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com