分析 (1)連接OC,根據(jù)等腰三角形的性質(zhì),三角形的內(nèi)角和與外角的性質(zhì),證得∠OCD=90°,即可證得CD是⊙O的切線;
(2)根據(jù)直角三角形有一個角是30度,30度的銳角所對的直角邊等于斜邊的一半,即可證得OB=BD.
解答 (1)證明:連接OC,![]()
∵CA=CD,∠ACD=120°,
∴∠A=∠D=30°,
∴∠COD=2∠A=2×30°=60°,
∴∠OCD=180°-60°-30°=90°,
∴OC⊥CD,
∵OC是⊙O的半徑,
∴CD是⊙O的切線;
(2)由(1)得:∠OCD=90°,
在直角△OCD中,∵∠D=30°,
∴OD=2OC,
∵OC=OB,
∴OD=2OB,
∴OB=BD=10,
∴⊙O的半徑是10.
點評 本題主要考查了等腰三角形的性質(zhì),三角形的內(nèi)角和與外角的性質(zhì),直角三角形的性質(zhì),切線的判定定理,難度適中.在判定一條直線為圓的切線時,當已知條件中未明確指出直線和圓是否有公共點時,常過圓心作該直線的垂線段,證明該線段的長等于半徑,可簡單的說成“無交點,作垂線段,證半徑”;當已知條件中明確指出直線與圓有公共點時,常連接過該公共點的半徑,證明該半徑垂直于這條直線,可簡單地說成“有交點,作半徑,證垂直”.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 9cm2 | B. | 6acm2 | C. | (6a+9)cm2 | D. | 無法確定 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com