分析 (1)已知l1的解析式,令y=0求出x的值即可;
(2)設(shè)l2的解析式為y=kx+b,由圖聯(lián)立方程組求出k,b的值;
(3)先解方程組$\left\{\begin{array}{l}{y=-3x+3}\\{y=\frac{3}{2}x-6}\end{array}\right.$,確定C(2,-3),再利用x軸上點(diǎn)的坐標(biāo)特征確定D點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式求解;
(4)由于△ADP與△ADC的面積相等,根據(jù)三角形面積公式得到點(diǎn)P與點(diǎn)C到AD的距離相等,則P點(diǎn)的縱坐標(biāo)為3,對于函數(shù)y=$\frac{3}{2}$x-6,計算出函數(shù)值為3所對應(yīng)的自變量的值即可得到P點(diǎn)坐標(biāo).
解答 解:(1)∵y=-3x+3,
∴令y=0,得-3x+3=0,
解得x=1,
∴D(1,0);
(2)設(shè)直線l2的解析表達(dá)式為y=kx+b,
由圖象知:x=4,y=0;x=3,y=-$\frac{3}{2}$,
代入表達(dá)式y(tǒng)=kx+b,
得$\left\{\begin{array}{l}{4k+b=0}\\{3k+b=-\frac{3}{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=\frac{3}{2}}\\{b=-6}\end{array}\right.$,
所以直線l2的解析表達(dá)式為y=$\frac{3}{2}$x-6;
(3)由$\left\{\begin{array}{l}{y=-3x+3}\\{y=\frac{3}{2}x-6}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$,
∴C(2,-3),
∵AD=3,
∴S△ADC=$\frac{1}{2}$×3×|-3|=$\frac{9}{2}$;
(4)因為點(diǎn)P與點(diǎn)C到AD的距離相等,
所以P點(diǎn)的縱坐標(biāo)為3,
當(dāng)y=3時,$\frac{3}{2}$x-6=3,解得x=6,
所以P點(diǎn)坐標(biāo)為(6,3).
點(diǎn)評 本題考查了兩條直線相交或平行的問題:兩條直線的交點(diǎn)坐標(biāo),就是由這兩條直線相對應(yīng)的一次函數(shù)表達(dá)式所組成的二元一次方程組的解.若兩條直線是平行的關(guān)系,那么它們的自變量系數(shù)相同,即k值相同.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10° | B. | 15° | C. | 30° | D. | 150° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,4) | B. | (-1,5 ) | C. | (-1,-3) | D. | (-3,5) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com