分析 (1)直接利用等邊三角形的性質(zhì)結(jié)合菱形的性質(zhì)得出△ABD為直角三角形,同理可知,△BED也為直角三角形;
(2)利用菱形的判定與性質(zhì)得出△AFG≌△EFH,得出FG=FH,進而結(jié)合角平分線的判定得出答案.
解答
解:(1)如圖①所示:連接AE,
∵△ABC與△ECD全等且為等邊三角形,
∴四邊形ACDE為菱形,連接AD,則AD平分∠EDC,
∴∠ADC=30°,
∵∠ABC=60°,
∴∠BAD=90°,
則△ABD為直角三角形,同理可知,△BED也為直角三角形;
(2)如圖②所示:連接AE、BE、AD,則四邊形ABCE和四邊形ACDE為菱形,
則AC⊥BE,AD⊥CE,設(shè)BE,AD相交于F,AC交BE于點G,CE交AD于點H,
則FG⊥AC,F(xiàn)H⊥BC,
由(1)得:∠BEC=∠DAC,∠AEF=∠EAF,
則AF=EF,
在△AFG和△EFH中
$\left\{\begin{array}{l}{∠AGF=∠FHE}\\{∠GFA=∠HFE}\\{AF=EF}\end{array}\right.$,
∴△AFG≌△EFH(AAS),
∴FG=FH,
由到角兩邊距離相等的點在角平分線上,可知,連接CF,CF為所作的角平分線.
點評 此題主要考查了應(yīng)用設(shè)計與作圖,正確應(yīng)用菱形的判定與性質(zhì)是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 3 | D. | -3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1.5×10-13米 | B. | 15×10-6米 | C. | 1.5×10-5米 | D. | 1.5×10-6米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com