分析 (1)要證AF=CG,只需證明△AFC≌△CBG即可;
(2)連接AG,證明△ACG≌△BCG,得出AG=BG,再證出∠D=∠GAD,得出AG=DG,從而證出DG=CF;
(3)延長(zhǎng)CG交AB于H,則CH⊥AB,H平分AB,繼而證得CH∥AD,得出DG=BG和△ADE與△CGE全等,從而證得CF=2DE.
解答 證明:(1)∵∠ACB=90°,AC=BC,CG平分∠ACB,
∴∠CAF=∠CBA=45°,∠BCG=∠ACG=45°,
∴∠BCG=∠CAF=45°
∵∠CBG=∠ACF,AC=BC
∴△BCG≌△CAF,
∴AF=CG;
(2)連接AG,如圖1所示:
在△ACG與△BCG中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACG=∠BCG}\\{CG=CG}\end{array}\right.$,
∴△ACG≌△BCG,
∴AG=BG,
∴∠GBA=∠GAB,
∵AD⊥AB
∴∠D=90°-∠GBA=90°-∠GAB=∠GAD,
∴AG=DG.
∵由(1)BG=CF,
∴DG=CF;
(3)如圖2,延長(zhǎng)CG交AB于H,
∵CG平分∠ACB,AC=BC,
∴CH⊥AB,CH平分AB,
∵AD⊥AB,
∴AD∥CG,
∴∠D=∠EGC,
在△ADE與△CGE中,
$\left\{\begin{array}{l}{∠AED=∠CEG}\\{∠D=∠EGC}\\{AE=CE}\end{array}\right.$,
∴△ADE≌△CGE(AAS),
∴DE=GE,
即DG=2DE,
∵AD∥CG,CH平分AB,
∴DG=BG,
∵△AFC≌△CBG,
∴CF=BG,
∴CF=2DE.
點(diǎn)評(píng) 本題考查了三角形全等的判定和性質(zhì)、等腰三角形的性質(zhì)、平行線的判定及性質(zhì),三角形全等是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0.5×2x+30x=5800 | B. | 0.5x+2×30x=5800 | ||
| C. | -0.5×2x+30x=5800 | D. | 0.5×2x-30x=5800 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com