分析 利用三角形中位線定理得出EF∥BC,EF=$\frac{1}{2}$BC,再利用相似三角形的判定與性質(zhì)得出$\frac{{S}_{△PEF}}{{S}_{△PBC}}$=$\frac{1}{4}$,進而利用平行四邊形的面積求法得出答案.
解答 解:∵E,F(xiàn)分別為PB,PC的中點,
∴EF∥BC,EF=$\frac{1}{2}$BC,
∴△PEF∽△PBC,
∴$\frac{EF}{BC}$=$\frac{1}{2}$,
∴$\frac{{S}_{△PEF}}{{S}_{△PBC}}$=$\frac{1}{4}$,
∵S△PEF=2,
∴S△PBC=8,
∵四邊形ABCD是平行四邊形,
∴S?ABCD=2×8=16.
故答案為:16.
點評 此題主要考查了平行四邊形的性質(zhì)以及相似三角形的判定與性質(zhì)以及三角形中位線定理等知識,得出$\frac{{S}_{△PEF}}{{S}_{△PBC}}$=$\frac{1}{4}$是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{30}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠DCB+$\frac{1}{2}$∠O=180° | B. | ∠ACB+$\frac{1}{2}$∠O=180° | C. | ∠ACB+∠O=180° | D. | ∠CAO+∠CBO=180° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com