【題目】已知
是⊙
的直徑,點(diǎn)
在⊙
上.
(1)如圖①,點(diǎn)
在⊙
上,且
,若
20°,求
的大小;
(2)如圖②,過點(diǎn)
作⊙
的切線,交
的延長線于點(diǎn)
,若⊙
的直徑為
,
,求
的長.
![]()
【答案】(1)
;(2)EA=
.
【解析】
(1)如圖①,連接OC,根據(jù)圓周角定理求出
,根據(jù)
可求得
,進(jìn)而可求
的大。
(2)如圖②,連接OC,首先證明△ACO是等邊三角形,然后根據(jù)切線的性質(zhì)可得△ECO是直角三角形且∠E=30°,再根據(jù)含30度直角三角形的性質(zhì)可得答案.
解:(1)如圖①,連接OC,
∵
,
∴
,
∵
,
∴
,
∴
;
![]()
(2)如圖②,連接OC,
∵⊙
的直徑為
,
∴OA=OC=
,
∵AC=
,
∴△ACO是等邊三角形,
∴∠AOC=60°,
∵CE切⊙
于點(diǎn)C,
∴∠ECO=90°,
∴在Rt△ECO中,∠E=30°,
∴OE=2OC=
,
∴EA=OE-OA=
.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)60°得到AE,連接EC,則:
(1)①∠ACE的度數(shù)是 ; ②線段AC,CD,CE之間的數(shù)量關(guān)系是 .
(2)如圖②,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到AE,連接EC,請判斷線段AC,CD,CE之間的數(shù)量關(guān)系,并說明理由;
(3)如圖②,AC與DE交于點(diǎn)F,在(2)條件下,若AC=8,求AF的最小值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)
的圖像與
軸正半軸相交,其頂點(diǎn)坐標(biāo)為
,下列結(jié)論:①
;②
;③
;④
.其中正確的有______個.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線
經(jīng)過
的三個頂點(diǎn),與
軸相交于
,點(diǎn)
坐標(biāo)為
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對稱點(diǎn),點(diǎn)
在
軸的正半軸上.
![]()
(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)
為線段
上一動點(diǎn),過點(diǎn)
作
軸,
軸, 垂足分別為點(diǎn)
,
,當(dāng)四邊形
為正方形時,求出點(diǎn)
的坐標(biāo);
(3)將(2) 中的正方形
沿
向右平移,記平移中的正方形
為正方形
,當(dāng)點(diǎn)
和點(diǎn)
重合時停止運(yùn)動, 設(shè)平移的距離為
,正方形的邊
與
交于點(diǎn)
,
所在的直線與
交于點(diǎn)
, 連接
,是否存在這樣的
,使
是等腰三角形?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生上學(xué)帶手機(jī)的現(xiàn)象越來越受到社會的關(guān)注,為此媒體記者隨機(jī)調(diào)查了某校若干名學(xué)生上學(xué)帶手機(jī)的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖1、圖2補(bǔ)充完整;
(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB邊上一動點(diǎn),N是AC邊上的一動點(diǎn),則MN+MC的最小值為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳潤商場銷售
,
兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價和售價如表所示:
|
| |
進(jìn)價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
該商場計劃購進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲 毛利潤9萬元.
(1)該商場計劃購進(jìn)
,
兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少
種設(shè)備的購進(jìn)數(shù)量,增加
種設(shè)備的購進(jìn)數(shù)量,已知
種設(shè)備增加的數(shù)量 是
種設(shè)備減少的數(shù)量的1.5倍.若用于購進(jìn)這兩種教學(xué)設(shè)備的 總資金不超過69萬元,問
種設(shè)備購進(jìn)數(shù)量至多減少多少套?
(3)在(2)的條件下,該商場所能獲得的最大利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費(fèi)悄況,隨機(jī)抽取部分家庭,對每戶家庭的文化教育年消費(fèi)金額進(jìn)行問卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖表.
請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
組別 | 家庭年文化教育消費(fèi)金額x(元) | 戶數(shù) |
A | x≤5000 | 36 |
B | 5000<x≤10000 | m |
C | 10000<x≤15000 | 27 |
D | 15000<x≤20000 | 15 |
E | x>20000 | 30 |
![]()
(1)本次被調(diào)査的家庭有__________戶,表中 m=__________;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在__________組.扇形統(tǒng)計圖中,D組所在扇形的圓心角是__________度;
(3)這個社區(qū)有2500戶家庭,請你估計家庭年文化教育消費(fèi)10000元以上的家庭有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數(shù))經(jīng)過A(0,2)、B(4,0)兩點(diǎn).
(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這條拋物線于N,求當(dāng)t取何值時,MN有最大值?最大值是多少?
(3)在(1)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,請直接寫出第四個頂點(diǎn)D的所有坐標(biāo)(直接寫出結(jié)果,不必寫解答過程)
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com