分析 當(dāng)△PCD是以CD為底的等腰三角形時,則P點在線段CD的垂直平分線上,由C、D坐標(biāo)可求得線段CD中點的坐標(biāo),從而可知P點的縱坐標(biāo),代入拋物線解析式可求得P點坐標(biāo).
解答
解:
∵△PCD是以CD為底的等腰三角形,
∴點P在線段CD的垂直平分線上,
如圖,過P作PE⊥y軸于點E,則E為線段CD的中點,
∵拋物線y=-x2+2x+3與y軸交于點C,
∴C(0,3),且D(0,1),
∴E點坐標(biāo)為(0,2),
∴P點縱坐標(biāo)為2,
在y=-x2+2x+3中,令y=2,可得-x2+2x+3=2,解得x=1±$\sqrt{2}$,
∴P點坐標(biāo)為(1+$\sqrt{2}$,2)或(1-$\sqrt{2}$,2),
故答案為:(1+$\sqrt{2}$,2)或(1-$\sqrt{2}$,2).
點評 本題主要考查等腰三角形的性質(zhì),利用等腰三角形的性質(zhì)求得P點縱坐標(biāo)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| x | 1 | 2 | 3 | 4 |
| y | 0 | 1 | 2 | 3 |
| x | -2 | 2 | 4 | 6 |
| y | 0 | 2 | 3 | 4 |
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com