分析 設CE=4k,則CF=3k,由矩形的性質和勾股定理得出EF=5k,∠BAF+∠AFB=90°,由折疊的性質得:∠AFE=∠ADC=90°,DE=EF=5k,AD=AF,AB=CD=9k,證出∠BAF=∠EFC,由三角函數(shù)得出BF=12k,由勾股定理得出AD=AF=15k,在Rt△ADE中,由勾股定理得出方程,解方程求出k=1,得出CD=9,CF=3,再由勾股定理求出DF即可.
解答 解:∵tan∠EFC=$\frac{CE}{CF}$=$\frac{4}{3}$,
設CE=4k,則CF=3k,
∵四邊形ABCD是矩形,
∴AB=DC,∠ADC=∠B=∠C=90°,
∴EF=$\sqrt{C{E}^{2}+C{F}^{2}}$=5k,∠BAF+∠AFB=90°,
由折疊的性質得:∠AFE=∠ADC=90°,DE=EF=5k,AD=AF,
∴AB=CD=9k,∠AFB+∠EFC=90°,
∴∠BAF=∠EFC,
∴tan∠BAF=$\frac{BF}{AB}$=$\frac{4}{3}$,
∴BF=12k,
∴AD=AF=$\sqrt{A{B}^{2}+B{F}^{2}}$=15k,
在Rt△ADE中,AD2+DE2=AE2,AE=5$\sqrt{10}$,
∴(15k)2+(5k)2=(5$\sqrt{10}$)2,
解得:k=1,
∴CD=9,CF=3,
∴DF=$\sqrt{C{F}^{2}+C{D}^{2}}$=$\sqrt{{3}^{2}+{9}^{2}}$=3$\sqrt{10}$;
故答案為:3$\sqrt{10}$.
點評 本題考查了矩形的性質、翻折變換的性質、勾股定理、三角函數(shù)的運用;熟練掌握矩形的性質和翻折變換的性質,由勾股定理得出方程是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com