分析 首先證明△ABF≌△DAE(SAS),即可推出∠AFB=∠DEA,由∠D=90°,推出∠DEA+∠DAE=90°,推出∠AFB+∠DAE=90°,推出∠AMF=180°-90°=90°.
解答 證明:∵四邊形ABCD是正方形,
∴∠BAD=∠ADE=90°,AD=AB=DC,
∵DF=CE,
∴AF=DE,
∵在△ABF和△DAE中,![]()
$\left\{\begin{array}{l}{AB=AD}\\{∠BAF=∠D}\\{AF=DE}\end{array}\right.$,
∴△ABF≌△DAE(SAS);
∴∠AFB=∠DEA,
∵∠D=90°,
∴∠DEA+∠DAE=90°,
∴∠AFB+∠DAE=90°,
∴∠AMF=180°-90°=90°,
∴AE⊥BF.
點評 本題考查了三角形的內(nèi)角和定理,垂直定義,正方形性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學生綜合運用性質(zhì)進行推理的能力.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4 | B. | 2$\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{3}$是3的平方根 | B. | |$\sqrt{2}$-1|=$\sqrt{2}$-1 | ||
| C. | -$\sqrt{5}$的相反數(shù)是$\sqrt{5}$ | D. | 帶根號的數(shù)都是無理數(shù) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com