如圖,在Rt△ABC中,∠ACB=90°,AC=
8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn)
,連結(jié)DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以![]()
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的
長為______cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為
五邊形時(shí),設(shè)五邊形的面積為S(cm²),求S與t的函數(shù)關(guān)系式.
(4)連結(jié)CD.當(dāng)點(diǎn)N于點(diǎn)D重合時(shí),有一點(diǎn)H從點(diǎn)M出
發(fā),在線段MN上以2.5cm/s的速
度沿M-N-M連續(xù)做往返運(yùn)動(dòng),直至點(diǎn)P與點(diǎn)E重合時(shí),點(diǎn)H停止往返運(yùn)動(dòng);當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),點(diǎn)H始終在線段MN的中心處.直接寫出在點(diǎn)P的整個(gè)運(yùn)動(dòng)過程中,點(diǎn)H落在線段CD上時(shí)t的取值范圍.
(1)t-2(2)t=4或t=![]()
(3)![]()
(4)t=![]()
或t=5或
6≤t≤8。
【解析】解:(1)t-2。
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),有兩種情況:
![]()
(3)當(dāng)正方形PQMN與△ABC重疊部分圖
形為五邊形時(shí),有兩種情況:
①當(dāng)2<t<4時(shí),如圖(3)a所示。
DP=t-2,PQ=2,∴CQ=PE=DE-DP=4-(t-
2)=6-t,AQ=AC-CQ=2+t,AM=AQ-MQ=t。
∵M(jìn)N∥BC,∴△AFM∽△ABC!郌M:BC = AM:AC=1:2,即FM:AM=BC:AC=1:2。
∴FM=![]()
AM=![]()
t.
∴![]()
![]()
![]()
。
②當(dāng)![]()
<t<8時(shí),如圖(3)b所示。
PE=t-6,∴PC=CM=PE+CE=t-4,
AM=AC-CM=12-t,PB=BE-PE=8-t,
∴FM=![]()
AM=6-![]()
t,PG=2PB=16-2t,
∴![]()
![]()
![]()
。
綜上所述,S與t的關(guān)系式為:![]()
。
(4)在點(diǎn)P的整個(gè)運(yùn)動(dòng)過程中,點(diǎn)H落在線段CD上時(shí)t的取值范圍是:t=![]()
或t=5或
6≤t≤8。
![]()
(4)本問涉及雙點(diǎn)的運(yùn)動(dòng),首
先需要正確理解題意,然后弄清點(diǎn)H、點(diǎn)P的運(yùn)動(dòng)過程:
依題意,點(diǎn)H與點(diǎn)P的運(yùn)動(dòng)分為兩個(gè)階段,如下圖所示:
①當(dāng)4<t<6
時(shí),此時(shí)點(diǎn)P在線段DE上運(yùn)動(dòng),如圖(4)a所示。
此階段點(diǎn)P運(yùn)動(dòng)時(shí)間為2s,因此點(diǎn)H運(yùn)動(dòng)距離為2.5×2=5
cm,而MN=2,
則
此階段中,點(diǎn)H將有兩
次機(jī)會落在線段CD上:
第一次:此時(shí)點(diǎn)H由M→H運(yùn)動(dòng)時(shí)間為(t-4)s,運(yùn)動(dòng)距離MH=2.5(t-4),
∴NH=2-MH=12-2.5t。
又DP=t-2,DN=DP
-2=t-4,
由DN=2NH得到:t-4=2(12-2.5t),解得t=![]()
。
第二次:此時(shí)點(diǎn)H由N→H運(yùn)
動(dòng)時(shí)間為t-4-![]()
=(t-4.8)s,
運(yùn)動(dòng)距離NH=2.5(t-4.8)=2.5t-12,
又DP=t-2,DN=DP-2=t-4,
由DN=2
NH得到:t-4=2(2.5t-12),解得t=5。
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
平面內(nèi)有四個(gè)點(diǎn)A、B、C、D,其中∠ABC=1500,∠ADC=300,AB=BC=1,則滿足題意的BD長![]()
的最大值是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以AP為一邊向上作正方形APDE,過點(diǎn)Q作Q
F∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,正方形和梯形重合部分的面積為Scm2.
(1)當(dāng)t= _________ s時(shí),點(diǎn)P與點(diǎn)Q重合;
(2)當(dāng)t= _________ s時(shí),點(diǎn)D在QF上;
(3)當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間(不包括Q
,B兩點(diǎn))時(shí),求S與t之間的函數(shù)關(guān)系式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)
(x>o)的圖象上,AB⊥x軸于
點(diǎn)B,AC⊥y軸于點(diǎn)C,延長CA至點(diǎn)D,使AD=AB,延長BA至點(diǎn)E,使AE=AC。直線DE分別交x軸,y軸于點(diǎn)P,Q。當(dāng)QE:DP=4:9時(shí),圖中的陰影部分的面積等于 _。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)P是菱形ABCD的對角線AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)
P垂直于AC的直
線交菱形ABCD的邊于M、N兩點(diǎn).設(shè)AC=2,BD=1,AP=x,△AMN的面積為y,則
y關(guān)于x的函數(shù)圖象大致形狀是【
】
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,在□ABC
D中,AH⊥DC,垂足為H,AB=
,AD=7,AH=
. 現(xiàn)有兩個(gè)動(dòng)點(diǎn)
E、F同時(shí)從點(diǎn)A出發(fā),分別以每秒1個(gè)單位長度、每秒3個(gè)單位長度的速度沿射線AC方向勻速運(yùn)動(dòng). 在點(diǎn)E、F運(yùn)動(dòng)過程中,以EF為邊作等邊△EFG,使△EFG與△ABC在射線AC的同側(cè),當(dāng)點(diǎn)E運(yùn)
動(dòng)到點(diǎn)C時(shí),E、F兩點(diǎn)同時(shí)停止運(yùn)動(dòng). 設(shè)運(yùn)轉(zhuǎn)時(shí)間為t秒.
(1)求線段AC的長;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△EFG與△ABC重疊部分
的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式
,并寫出相應(yīng)的自變量t的取值范圍;
(3)當(dāng)?shù)冗叀鱁FG的頂點(diǎn)E到達(dá)點(diǎn)C時(shí),如圖2,將△EFG繞著點(diǎn)C旋轉(zhuǎn)一個(gè)角度
. 在旋轉(zhuǎn)過程中,點(diǎn)E與點(diǎn)C重合,F(xiàn)的對應(yīng)點(diǎn)為F′,G的對應(yīng)點(diǎn)為G′. 設(shè)直線F′G′與射線DC、射
線AC分別相交于M、N兩點(diǎn).試問:是否存在點(diǎn)M、N,使得△CMN是以∠MCN為底角的等腰三角形?若存在,請求出線段CM的長度;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=12cm,BC=8cm.點(diǎn)E、F、G分別
從點(diǎn)A、B、C同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向移動(dòng),點(diǎn)E、G的速度均為2cm/s,點(diǎn)F的速度為4cm/s,當(dāng)點(diǎn)F追上點(diǎn)G(即點(diǎn)F與點(diǎn)G重合)時(shí),
三個(gè)點(diǎn)隨之停止移動(dòng).設(shè)移動(dòng)開始后第ts時(shí),△EFG的面積為Scm2。
![]()
![]()
![]()
(1)當(dāng)![]()
=1s時(shí),S的值是多少?
(2) 當(dāng)![]()
時(shí),點(diǎn)E、F、G分別在邊AB、BC、CD上移動(dòng),用含
t的代
數(shù)式表示S;當(dāng)![]()
時(shí),點(diǎn)E在邊AB上移動(dòng),點(diǎn)F、G都在邊CD上移動(dòng),用含t的代數(shù)式表示S.
(3)若點(diǎn)F在矩形的邊BC上移動(dòng),當(dāng)![]()
為何值時(shí),以點(diǎn)B、E、F為頂點(diǎn)的三角形與以C、F、G為頂點(diǎn)的三角形相似?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,3),△OAB沿x軸向左平移后得到△O′A′B′,點(diǎn)A的對應(yīng)點(diǎn)在直線
上一點(diǎn),則點(diǎn)B與其對應(yīng)點(diǎn)B′間的距離為【 】
![]()
A.
B.3 C.4
D.5
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com