欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1BC1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E、F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時,判定四邊形A1BCE的形狀并說明理由.

分析 (1)根據(jù)等腰三角形的性質(zhì)得到AB=BC,∠A=∠C,由旋轉(zhuǎn)的性質(zhì)得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根據(jù)全等三角形的判定定理得到△BCF≌△BA1D;
(2)由旋轉(zhuǎn)的性質(zhì)得到∠A1=∠A,根據(jù)平角的定義得到∠DEC=180°-α,根據(jù)四邊形的內(nèi)角和得到∠ABC=360°-∠A1-∠C-∠A1EC=180°-α,證得四邊形A1BCE是平行四邊形,由于A1B=BC,即可得到四邊形A1BCE是菱形.

解答 (1)證明:∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
∵將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1BC1的位置,
∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1
在△BCF與△BA1D中,
$\left\{\begin{array}{l}{∠{A}_{1}=∠C}\\{{A}_{1}B=BC}\\{∠{A}_{1}BD=∠CBF}\end{array}\right.$,
∴△BCF≌△BA1D;

(2)解:四邊形A1BCE是菱形,
∵將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1BC1的位置,
∴∠A1=∠A,
∵∠ADE=∠A1DB,
∴∠AED=∠A1BD=α,
∴∠DEC=180°-α,
∵∠C=α,
∴∠A1=α,
∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α,
∴∠A1=∠C,∠A1BC=∠A1EC,
∴四邊形A1BCE是平行四邊形,
∴A1B=BC,
∴四邊形A1BCE是菱形.

點評 本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),正確的理解題意是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.某校男子足球隊的年齡如下表所示,則這些隊員年齡的眾數(shù)是( 。
人數(shù)26842
年齡(歲)1213141516
A.2B.8C.14D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.某電商銷售一款夏季時裝,進價40元/件,售價110元/件,每天銷售20件,每銷售一件需繳納電商平臺推廣費用a元(a>0).未來30天,這款時裝將開展“每天降價1元”的夏令促銷活動,即從第1天起每天的單價均比前一天降1元.通過市場調(diào)研發(fā)現(xiàn),該時裝單價每降1元,每天銷量增加4件.在這30天內(nèi),要使每天繳納電商平臺推廣費用后的利潤隨天數(shù)t(t為正整數(shù))的增大而增大,a的取值范圍應(yīng)為0<a<6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買60元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為y1(元),在乙采摘園所需總費用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克30元;
(2)求y1、y2與x的函數(shù)表達式;
(3)在圖中畫出y1與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,已知A,B是反比例函數(shù)y=$\frac{k}{x}$(k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點運動時間為t,則S關(guān)于t的函數(shù)圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)學(xué)活動-旋轉(zhuǎn)變換
(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點C逆時針旋轉(zhuǎn)50°得到△A′B′C,連接BB′,求∠A′B′B的大小;
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點C逆時針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓.
(Ⅰ)猜想:直線BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
(Ⅱ)連接A′B,求線段A′B的長度;
(3)如圖③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,將△ABC繞點C逆時針旋轉(zhuǎn)2β角度(0°<2β<180°)得到△A′B′C,連接A′B和BB′,以A′為圓心,A′B′長為半徑作圓,問:角α與角β滿足什么條件時,直線BB′與⊙A′相切,請說明理由,并求此條件下線段A′B的長度(結(jié)果用角α或角β的三角函數(shù)及字母m、n所組成的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( 。
A.7B.8C.7$\sqrt{2}$D.7$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.計算:$\frac{5{c}^{2}}{6ab}•\frac{3b}{{a}^{2}c}$=$\frac{5c}{2{a}^{3}}$.

查看答案和解析>>

同步練習(xí)冊答案