分析 (1)設(shè)OB=OP=DC=x,則DP=x-4,在Rt△ODP中,根據(jù)OD2+DP2=OP2,解得:x=10,然后根據(jù)△ODP∽△PCA得到AC=$\frac{x-4}{2}$=3,從而得到AB=5,表示出點(diǎn)A(10,5);
(2)根據(jù)點(diǎn)P恰好是CD邊的中點(diǎn)設(shè)DP=PC=y,則DC=OB=OP=2y,在Rt△ODP中,根據(jù)OD2+DP2=OP2,解得:y=$\frac{8\sqrt{3}}{3}$,然后利用△ODP∽△PCA得到AC=$\frac{{y}^{2}}{8}$=$\frac{8}{3}$,從而利用tan∠AOB=$\frac{\sqrt{3}}{3}$得到∠AOB=30°;
(3)作MQ∥AN,交PB于點(diǎn)Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=$\frac{1}{2}$PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=$\frac{1}{2}$QB,再求出EF=$\frac{1}{2}$PB,由(1)中的結(jié)論求出PB,最后代入EF=$\frac{1}{2}$PB即可得出線段EF的長度不變.
解答 解:(1)∵D(0,8),
∴OD=BC=8,
∵OD=2CP,
∴CP=4,
設(shè)OB=OP=DC=x,
則DP=x-4,
在Rt△ODP中,OD2+DP2=OP2,
即:82+(x-4)2=x2,
解得:x=10,
∵∠OPA=∠B=90°,
∴△ODP∽△PCA,
∴OD:PC=DP:CA,
∴8:4=(x-4):AC,
則AC=$\frac{x-4}{2}$=3,
∴AB=5,
∴點(diǎn)A(10,5);
(2)∵點(diǎn) P 恰好是CD邊的中點(diǎn),
設(shè)DP=PC=y,
則DC=OB=OP=2y,
在Rt△ODP中,OD2+DP2=OP2,
即:82+y2=(2y)2,
解得:y=$\frac{8\sqrt{3}}{3}$,
∵∠OPA=∠B=90°,
∴△ODP∽△PCA,
∴OD:PC=DP:CA,
∴8:y=y:AC,
則AC=$\frac{{y}^{2}}{8}$=$\frac{8}{3}$,
∴AB=8-$\frac{8}{3}$=$\frac{16}{3}$,
∵OB=2y=$\frac{16\sqrt{3}}{3}$,
∴tan∠AOB=$\frac{AB}{OB}$=$\frac{\frac{16}{3}}{\frac{16\sqrt{3}}{3}}$=$\frac{\sqrt{3}}{3}$,
∴∠AOB=30°;
(3)作MQ∥AN,交PB于點(diǎn)Q,如圖2,
∵AP=AB,MQ∥AN
∴∠APB=∠ABP=∠MQP.
∴MP=MQ,
∵BN=PM,
∴BN=QM.
∵M(jìn)P=MQ,ME⊥PQ,
∴EQ=$\frac{1}{2}$PQ.
∵M(jìn)Q∥AN,
∴∠QMF=∠BNF,
在△MFQ和△NFB中,
$\left\{\begin{array}{l}{∠QMF=∠NFB}\\{∠QMF=∠BNF}\\{MQ=BN}\end{array}\right.$,
∴△MFQ≌△NFB(AAS).
∴QF=$\frac{1}{2}$QB,
∴EF=EQ+QF=$\frac{1}{2}$PQ+$\frac{1}{2}$QB=$\frac{1}{2}$PB,
由(Ⅰ)中的結(jié)論可得:PC=4,BC=8,∠C=90°,
∴PB=$\sqrt{{8}^{2}+{4}^{2}}$=4$\sqrt{5}$,
∴EF=$\frac{1}{2}$PB=2$\sqrt{5}$,
∴在(1)的條件下,當(dāng)點(diǎn)M、N在移動(dòng)過程中,線段EF的長度不變,它的長度為2$\sqrt{5}$.
點(diǎn)評 此題考查了相似形綜合,用到的知識點(diǎn)是相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、等腰三角形的性質(zhì),關(guān)鍵是做出輔助線,找出全等和相似的三角形.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 125° | B. | 75° | C. | 65° | D. | 55° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com