分析 (1)由三角形中位線定理得出HE∥AC,HE=$\frac{1}{2}$AC,GF∥AC,GF=$\frac{1}{2}$AC,因此HE=GF且HE∥GF;即可得出結(jié)論;
(2)由菱形的性質(zhì)得出EF=HE,由(1)得:HE=$\frac{1}{2}$AC,同理:EF=$\frac{1}{2}$BD,因此AC=BC.
解答 (1)證明:如圖1所示
,連接AC,
∵E、F、G、H分別是四邊形ABCD邊的中點(diǎn),
∴HE∥AC,HE=$\frac{1}{2}$AC,GF∥AC,GF=$\frac{1}{2}$AC,
∴HE=GF且HE∥GF;
∴四邊形EFGH是平行四邊形.
(2)解:連接BD,如圖2所示:
若四邊形EFGH成為菱形,
則EF=HE,![]()
由(1)得:HE=$\frac{1}{2}$AC,
同理:EF=$\frac{1}{2}$BD,
∴AC=BC;
故答案為:AC=BD.
點(diǎn)評(píng) 本題考查了平行四邊形的判定、中點(diǎn)四邊形、菱形的性質(zhì)、三角形中位線定理;熟練掌握三角形中位線定理是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | abc>0 | B. | a-b+c<0 | C. | b2-4ac<0 | D. | 2a+b=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5 | B. | 11 | C. | 5或-1 | D. | 11或-7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (2,3) | B. | (2,-3) | C. | (-2,3) | D. | (-2,-3) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com