| A. | 相交 | B. | 相切 | C. | 相離 | D. | 不能確定 |
分析 過C作CD⊥AB于D,根據(jù)勾股定理求出AB,根據(jù)三角形的面積公式求出CD,得出d<r,根據(jù)直線和圓的位置關(guān)系即可得出結(jié)論.
解答 解:過C作CD⊥AB于D,如圖所示:
∵在Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
∵△ABC的面積=$\frac{1}{2}$AC×BC=$\frac{1}{2}$AB×CD,
∴3×4=5CD,
∴CD=2.4<2.5,
即d<r,
∴以2.5為半徑的⊙C與直線AB的關(guān)系是相交;
故選A.
點(diǎn)評(píng) 本題考查了直線和圓的位置關(guān)系,用到的知識(shí)點(diǎn)是勾股定理,三角形的面積公式;解此題的關(guān)鍵是能正確作出輔助線,并進(jìn)一步求出CD的長,注意:直線和圓的位置關(guān)系有:相離,相切,相交.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 對(duì)角線互相平分的四邊形是平行四邊形 | |
| B. | 兩組對(duì)邊分別相等的四邊形是平行四邊形 | |
| C. | 一組對(duì)邊平行且相等的四邊形是平行四邊形 | |
| D. | 一組對(duì)邊相等,另一組對(duì)邊平行的四邊形是平行四邊形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com