分析 (1)把A、C兩點代入拋物線的解析式中列方程組可求得b、c的值,令y=0,解方程可得B的坐標(biāo),利用待定系數(shù)法求直線BC的解析式;
(2)根據(jù)解析式分別表示M、N兩點的坐標(biāo),其縱坐標(biāo)的差就是MN的長,配方后求最值即可;
(3)分兩種情況:
①當(dāng)點P在線段OB上時,則有MN=-m2+3m,
②當(dāng)點P不在線段OB上時,則有MN=-m+3-(-m2+2m+3)=m2-3m,
根據(jù)MN=3列方程解出即可.
解答 解:(1)∵拋物線過A、C兩點,
∴代入拋物線解析式可得:$\left\{\begin{array}{l}{-1-\\;b+c=0}\\{c=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$,
∴拋物線解析式為y=-x2+2x+3,
令y=0可得,-x2+2x+3=0,解x1=-1,x2=3,
∵B點在A點右側(cè),
∴B點坐標(biāo)為(3,0),
設(shè)直線BC解析式為y=kx+s,
把B、C坐標(biāo)代入可得$\left\{\begin{array}{l}{3k+s=0}\\{s=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-1}\\{s=3}\end{array}\right.$,
∴直線BC解析式為y=-x+3;
(2)∵PM⊥x軸,點P的橫坐標(biāo)為m,
∴M(m,-m2+2m+3),N(m,-m+3),
∵P在線段OB上運動,
∴M點在N點上方,
∴MN=-m2+2m+3-(-m+3)=-m2+3m=-(m-$\frac{3}{2}$)2+$\frac{9}{4}$,
∴當(dāng)m=$\frac{3}{2}$時,MN有最大值,MN的最大值為$\frac{9}{4}$;
(3)∵PM⊥x軸,
∴MN∥OC,
當(dāng)以C、O、M、N為頂點的四邊形是平行四邊形時,則有OC=MN,
當(dāng)點P在線段OB上時,則有MN=-m2+3m,
∴-m2+3m=3,此方程無實數(shù)根,
當(dāng)點P不在線段OB上時,則有MN=-m+3-(-m2+2m+3)=m2-3m,
∴m2-3m=3,解得m=$\frac{3+\sqrt{21}}{2}$或m=$\frac{3-\sqrt{21}}{2}$,
綜上可知當(dāng)以C、O、M、N為頂點的四邊形是平行四邊形時,m的值為$\frac{3+\sqrt{21}}{2}$或$\frac{3-\sqrt{21}}{2}$.
點評 本題是二次函數(shù)的綜合題,難度適中,考查了利用待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式、二次函數(shù)的最值、平行四邊形的判定以及一元二次方程的解法,此題將線段的最值轉(zhuǎn)化為二次函數(shù)的最值問題,同時還采用了分類討論的方法解決問題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{10a}{m}$米 | B. | $\frac{10m}{a}$米 | C. | $\frac{am}{10}$米 | D. | $\frac{m}{10a}$米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com