分析 (1)根據(jù)題意得出BD=CD=BC,由SSS證明△ABD≌△ACD,得出∠BAD=∠CAD即可;
(2)由等腰三角形的性質(zhì)得出∠ABC=∠ACB=65°,由等邊三角形的性質(zhì)得出∠DBC=∠DCB=60°,再由平角的定義求出∠DBE=∠DCF=55°,然后根據(jù)弧長(zhǎng)公式求出$\widehat{DE}$、$\widehat{DF}$ 的長(zhǎng)度,即可得出結(jié)果.
解答 (1)證明:根據(jù)題意得:BD=CD=BC,
在△ABD和△ACD中,
$\left\{\begin{array}{l}{AB=AC}\\{BD=CD}\\{AD=AD}\end{array}\right.$,
∴△ABD≌△ACD(SSS).
∴∠BAD=∠CAD,
即AD平分∠BAC;
(2)解:∵AB=AC,∠BAC=50°,
∴∠ABC=∠ACB=65°,
∵BD=CD=BC,
∴△BDC為等邊三角形,
∴∠DBC=∠DCB=60°,
∴∠DBE=∠DCF=55°,
∵BC=6,∴BD=CD=6,
∴$\widehat{DE}$ 的長(zhǎng)度=$\widehat{DF}$的長(zhǎng)度=$\frac{55×π×6}{180}$=$\frac{11π}{6}$;
∴$\widehat{DE}$、$\widehat{DF}$ 的長(zhǎng)度之和為$\frac{11π}{6}$+$\frac{11π}{6}$=$\frac{11π}{3}$.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、弧長(zhǎng)的計(jì)算;熟練掌握全等三角形和等邊三角形的判定與性質(zhì),并能進(jìn)行推理計(jì)算是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2015π | B. | 3019.5π | C. | 3018π | D. | 3024π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com