分析 (1)連接OD,利用AB=AC,OD=OC,證得OD∥AD,易證DF⊥OD,故DF為⊙O的切線;
(2)根據圓內接四邊形的性質得到∠BED=∠C,然后根據相似三角形的判定定理即可得到結論;
(3)證得△BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.
解答 (1)證明:如圖,連接OD.
∵AB=AC,
∴∠B=∠C,
∵OD=OC,
∴∠ODC=∠C,![]()
∴∠ODC=∠B,
∴OD∥AB,
∵DF⊥AB,
∴OD⊥DF,
∵點D在⊙O上,
∴直線DF與⊙O相切;
(2)證明:∵∠BED=∠C,∠B=∠B,
∴△BED∽△BCA;
(3)解:∵四邊形ACDE是⊙O的內接四邊形,
∴∠AED+∠ACD=180°,
∵∠AED+∠BED=180°,
∴∠BED=∠ACD,
∵∠B=∠B,
∴△BED∽△BCA,
∴$\frac{BD}{AB}=\frac{BE}{BC}$,
∵OD∥AB,AO=CO,
∴BD=CD=$\frac{1}{2}$BC=3,
又∵AE=7,
∴$\frac{3}{7+BE}=\frac{BE}{6}$,
∴BE=2,
∴AC=AB=AE+BE=7+2=9.
點評 此題考查了切線的判定,三角形相似的判定與性質,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | $\left\{{\begin{array}{l}{8x-3=y}\\{7x+4=y}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{8x+3=y}\\{7x-4=y}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{y-8x=3}\\{y-7x=4}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{8x-y=3}\\{7x-y=4}\end{array}}\right.$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | ②④⑤⑥ | B. | ①③⑤⑥ | C. | ②③④⑥ | D. | ①③④⑤ |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com