| A. | ①②④ | B. | ①②③ | C. | ①③④ | D. | ①②③④ |
分析 連接CD根據(jù)等腰直角三角形的性質(zhì)就可以得出△ADE≌△CDF,就可以得出AE=CF,進而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出結(jié)論.
解答 解:連接CD,∵AC=BC,點D為AB中點,∠ACB=90°,
∴AD=CD=BD=$\frac{1}{2}$AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.
∴∠ADE+∠EDC=90°,
∵∠EDC+∠FDC=∠GDH=90°,
∴∠ADE=CDF.
在△ADE和△CDF中,$\left\{\begin{array}{l}{∠A=∠DCB}\\{AD=CD}\\{∠ADE=∠CDF}\end{array}\right.$,
∴△ADE≌△CDF(ASA),
∴AE=CF,DE=DF,S△ADE=S△CDF.
∵AC=BC,
∴AC-AE=BC-CF,
∴CE=BF.
∵AC=AE+CE,
∴AC=AE+BF.
∵AC2+BC2=AB2,
∴AC=$\frac{\sqrt{2}}{2}$AB,
∴AE+BF=$\frac{\sqrt{2}}{2}$AB.
∵DE=DF,∠GDH=90°,
∴△DEF始終為等腰直角三角形.
∵CE2+CF2=EF2,
∴AE2+BF2=EF2.
∵S四邊形CEDF=S△EDC+S△EDF,
∴S四邊形CEDF=S△EDC+S△ADE=$\frac{1}{2}$S△ABC.
∴正確的有①②③④.
故選D.![]()
點評 本題考查了等腰直角三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,三角形的面積公式的運用,解答時證明△ADE≌△CDF是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 兩根互為相反數(shù) | B. | 兩根相等 | C. | 兩根互為倒數(shù) | D. | 兩根和為1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a>3 | B. | a≥3 | C. | a<3 | D. | a≤3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=2(x+4)2+5 | B. | y=2(x-4)2+5 | C. | y=2(x+4)2-5 | D. | y=2(x-4)2-5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠α的補角和∠β的補角相等 | B. | ∠α的余角和∠β的補角相等 | ||
| C. | ∠α的余角和∠β的補角互余 | D. | ∠α的余角和∠β的補角互補 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com